
SYS-CON
PUBLICATIONS

Cover Story: Large-Scale Software Design E Ming Tan
How to extend the service broker 8

JDJ Feature: JavaBeans vs InterpriseBeans Lawrence Rodrigues
The primary objective of both models is to and Gopalan Suresh Raj
ensure protability, reusability and interoperability
of Java software components 22

EJB Home: Enterprise JavaBeans Persistence Jason Westra
Bean-managed and container-managed persistence:
advantages and disadvantages 32

JDJ’s Exclusive JavaOne Coverage Alan Williamson
A look back at the JavaOne conference in San Fransisco 46

Special Feature: 1999 JDJ Reader’s Choice Awards
Java Developer’s Journal Readers’ Choice Awards, the “Oscars
of the Software Industry” recognized 14 winners and 28 finalists
during an awards ceremony at JavaOne in San Francisco 52

First Look: Cyrus Intersoft Scott Davison
Speiros delivers true anytime, anywhere pervasive computing 8

Volume:4 Issue:8, August 1999

The World’s Leading Java Resource

TM

1999 Readers’ ChoiceAwards

From the Editor
(Im)perfect

Timing
by Sean Rhody

pg. 5

Straight Talking
Party! Party! Party!

by Allan Williamson pg. 18

Java & PL/SQL
PL/SQL

by Vivek Sharma pg. 68

Tips & Tricks
Adding a Custom Event

to a JavaBean
by Jim Mangione pg. 74

Object-Oriented
Programming

Back to Basics
by Gene Callahan

& Brian Clark pg. 62

Widget Factory
Reflecting a Bean

onto a Table
by Jim Crafton pg. 38

IMHO
Java, XML and

Web Syndication
by Jeremy Allaire pg. 7

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

▲

JA
VA

de
velo

per’s journalJDJ
Readers’

CHOICE

 AWARD

2 AUGUST 1999

BEA
www.weblogic.beasys.com

3AUGUST 1999

ProtoView
www.protoview.com

4 AUGUST 1999

Sun Microsystems
www.sun.com/service/suned

5AUGUST 1999

EDITORIAL ADVISORY BOARD
Ted Coombs, Bill Dunlap, David Gee, Michel Gerin,

Arthur van Hoff, John Olson, George Paolini,
Kim Polese, Sean Rhody, Rick Ross,

Ajit Sagar, Richard Soley, Alan Williamson
Editor-in-Chief: Sean Rhody

Art Director: Jim Morgan
Executive Editor: M’lou Pinkham

Production Editor: Cheryl Van Sise
Assistant Editor: Nancy Valentine

Editorial Consultant: Scott Davison
Technical Editor: Bahadir Karuv

Product Review Editor: Ed Zebrowski
Industry News Editor. Alan Williamson

E-commerce Editor. Ajit Sagar

WRITERS IN THIS ISSUE
Jeremy Allaire, Gene Callahan, Brian Clark, Jim Crafton,

Scott Davison, Jim Mangione, Gopalan Suresh Raj,
Sean Rhody, Lawrence Rodrigues, E Ming Tan,
Vivek Sharma, Jason Westra, Alan Williamson

SUBSCRIPTIONS
For subscriptions and requests for bulk orders,

please send your letters to Subscription Department

Subscription Hotline: 800 513-7111
Cover Price: $4.99/issue

Domestic: $49/yr. (12 issues) Canada/Mexico: $69/yr.
Overseas: Basic subscription price plus airmail postage

(U.S. Banks or Money Orders). Back Issues: $12 each

Publisher, President and CEO: Fuat A. Kircaali
Vice President, Production: Jim Morgan
Vice President, Marketing: Carmen Gonzalez

Chief Financial Officer: Ignacio Arellano
Accounting Manager: Eli Horowitz
Circulation Manager. Mary Ann McBride

Advertising Account Managers: Robyn Forma
Megan Ring

Project Coordinator: Jaclyn Redmond
Advertising Assistant: Christine Russell

Graphic Designers: Robin Groves
Alex Botero

Graphic Design Intern: Aarathi Venkataraman
SYS-CON Radio Editor: Chad Sitler

Webmaster: Robert Diamond
Web Services Intern: Digant B. Dave

Customer Service: Sian O’Gorman
Ann Marie Milillo

Online Customer Service: Amanda Moskowitz

EDITORIAL OFFICES
SYS-CON Publications, Inc.

39 E. Central Ave., Pearl River, NY 10965
Telephone: 914 735-7300 Fax: 914 735-6547

Subscribe@SYS-CON.com

JAVA DEVELOPER’S JOURNAL (ISSN#1087-6944) is
published monthly (12 times a year) for $49.00 by SYS-CON

Publications, Inc., 39 E. Central Ave., Pearl River, NY 10965-2306.
Application to mail at Periodicals Postage rates is pending at

Pearl River, NY 10965 and additional mailing offices.
POSTMASTER: Send address changes to:

JAVA DEVELOPER’S JOURNAL, SYS-CON Publications, Inc.,
39 E. Central Ave., Pearl River, NY 10965-2306.

© COPYRIGHT
Copyright © 1999 by SYS-CON Publications, Inc. All rights reserved. No part of

this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopy or any information storage and
retrieval system, without written permission. For promotional reprints, contact

reprint coordinator. SYS-CON Publications, Inc., reserves the right to revise,
republish and authorize its readers to use the articles submitted for publication.

Worldwide Distribution by
Curtis Circulation Company

739 River Road, New Milford NJ 07646-3048 Phone: 201 634-7400

Java and Java-based marks are trademarks or registered trademarks
of Sun Microsystems, Inc., in the United States and other countries.

SYS-CON Publications, Inc., is independent of Sun Microsystems, Inc.
All brand and product names used on these pages are trade names,

service marks or trademarks of their respective companies.

SEAN RHODY, EDITOR-IN-CHIEF

A
ll right, I’m ready to admit that I made a slight miscalculation. Not
an error, necessarily…just a slight misjudgment when it came to the
timing of something. Back in January I made a set of predictions
concerning the industry, as I’m wont to do at the beginning of a new
year. In those predictions I stated that I didn’t think we’d see any
Enterprise JavaBean products until the end of this year.

Unless you’ve been living under a rock, you know that EJB is the all-Java
equivalent of CORBA or COM. It’s also the direction I see Java program-
ming headed toward for a number of reasons. First of all, it offers a strong

set of built-in functionality. It handles transaction management for you. It handles concur-
rency management for you. It allows you to write code as if only a single user was ever going
to use it. And it provides a fairly scalable platform for distributed computing. Some EJB imple-
mentations will run on any hardware that supports a JVM, from a PC running 95 or Linux to
an IBM 390.

It was my suspicion that applications and products designed for EJB wouldn’t be available
until the end of the year. That was for a number of good reasons. The 1.0 release of the EJB
specification was publicly released in March 1998. To the best of my knowledge, the first EJB
servers appeared around September – please don’t get mad if I missed some early releases. It
doesn’t really matter

I think the interest in EJB started to reach critical mass about the time we did our JDJ Edi-
tor’s Choice Awards, which we presented at the JiBE show in December. By that point I had
identified a number of vendors who were releasing products that supported EJB, either as the
sole point of the server or as an addition to existing functionality. Last time I counted there
were 28 server products that supported EJB.

My thoughts in January were that it would take about nine months to develop application
products for EJB. I wasn’t wrong in that – in fact, I was the chief architect of a project that did
just that. What I forgot about was that some vendors were hard at work with beta software
three months before the true release of shipping products.

So that brings us to August, or actually July as I write this. I now know of one shipping prod-
uct and one beta product that are completely based on EJB. The shipping product is called
JumpStart, a product from the Theory Center. I’ll be evaluating the product in a forthcoming
issue. The beta product is from a company called TradingDynamics. Both address e-com-
merce. JumpStart is a general-purpose transaction mechanism that supports rapid develop-
ment of business to consumer sites. The TradingDynamics product is more of a brokerage
product – designed to handle negotiations and auctions rather than just purchases.

A fact I find particularly interesting is that TradingDynamics and the Theory Center both
selected WebLogic as their default EJB host. I have nothing but good
things to say about BEA and their WebLogic product – I worked with it
for nine months and found it to be incredibly stable and scalable. The
Cloudscape Java database also seems to be evolving as a de facto stan-
dard for demonstration implementations. For those of you who don’t
know Cloudscape, they focus on embedded databases for Java. Small
ones, not databases that would compete with Oracle and the like.
If you have a system that needs a local database with no man-
agement, Cloudscape is worth a look.

So I was a little off on timing. I’m glad to see it, actually.
There’s not a technology related to Java that I believe in
more strongly than EJB. I think it’s a good answer to dis-
tributed computing, and most solutions associated with it
provide multiple connection options so you can build your
business logic, then create a Java application to administer
the system, and an applet or a servlet to provide access to the
system.

(Im)perfect Timing

F R O M T H E E D I T O R

AUTHOR BIO
Sean Rhody is the editor-in-chief of Java Developer’s Journal. He is also

a senior consultant with Computer Sciences Corporation, where he
specializes in application architecture – particularly distributed systems.

sean@sys-con.com

Apology: On the cover of the June isssue
writer Mohan Rajagopalan’s name was
misspelled. We apologize for the error.

6 AUGUST 1999

Computer Associates
www.cai.com/ads/jasmine/dev

7AUGUST 1999

Soft-
Wired

www.softwired.com

O
ver the past year significant momentum has grown behind the unique
intersection of two core Web platform technologies, Java and XML.
Clearly, with Java emerging as the predominant Internet-system pro-
gramming language and XML emerging as the dominant model for
Internet data, these two technologies are bound to intersect in interest-
ing ways. Indeed, almost without exception Java has been the primary

reference implementation environment for emerging XML technologies such
as XML and XSL parsers, as well as XML-centric object database systems.

The meshing of these two key technologies is also at the intersection of a revolution in how the
Internet economy functions. Over the last few months we’ve begun to see an emerging concept
that is quickly spreading across leading Internet companies and technology platforms. The con-
cept is Web syndication, which refers to building affiliate and syndicate networks across Web sites,
and syndicating content and application assets to create Internet value chains and Internet-based
e-commerce businesses.

The convergence of Java, XML and Web syndication is perhaps one of the most important shifts
in the Web platform landscape, and beckons to be better understood. Indeed, this shift affects how
Java systems will be built for the Web. It affects the future of distributed computing models, poten-
tially shifting the balance of power away from Java-centric models based on RMI, CORBA or EJB
and toward XML-centric distributed computing. Overall it creates a larger economic opportunity
for every company embracing the Internet.

A quick review of the current state of Java, XML and syndication on the Web is well worth our
time.

The Current Role of Java
Despite the significant limitations of Java in browsers, Java has established itself in a dominant

position in the emerging Web application landscape. Increasingly, companies are embracing the
three (or n-tier) application model with HTML/DHTML in browsers, Java on the server and data-
bases behind this. There are many variations on this model, of course, depending on the require-
ments and available skill sets on any given project. For example, in many cases the server-side
includes a scripting abstraction layer, typically implemented in JavaScript or ColdFusion, and tag-
based development, which encapsulates servlets or EJB component interactions.

For the most part these applications are built for end users accessing the applications through
Web browsers on intranets and Internet sites. Additionally, companies are increasing their invest-
ment in Java as a component implementation language through CORBA and EJB, where applica-
tion objects service other applications across the network. For many developers and companies
there is even a sense of market stability in the historically incoherent distributed-computing land-
scape. Or so it seems.

The Current Role of XML
As an emerging technology, XML has received nearly the same amount of coverage that Java did

in its early years of adoption. Despite this, XML adoption remains fairly limited and scattered,
though this is rapidly changing as companies begin to understand its role and economic value
more clearly.

XML emerged over a year ago as a next-generation technology for structuring and exchanging
information on the Web. Initially, XML was greeted as the “future of HTML,” with the focus on
browser-based adoption and integration with presentation and formatting technologies such as
CSS and XSL. This was the document-centric XML world speaking, and, frankly, was easy for pun-
dits and the press to understand. This approach to XML has largely fallen flat; few Web developers
are actively using XML for storing Web documents or CSS/XSL to format and deliver those Web
documents.

JEREMY ALLAIRE, VICE PRESIDENT OF TECHNOLOGY STRATEGY AT ALLAIRE

I M H O

AUTHOR BIO
Jeremy Allaire is a cofounder and vice president of technology strategy at Allaire. He helps determine the company’s future product direction and
is responsible for establishing key strategic partnerships within the Internet industry. Jeremy has been a regular author and analyst on
Internet technologies for the past seven years, and he holds degrees in both political science and philosophy from Macalester College.

Java, XML and Web Syndication

jeremy@allaire.com

(continued on page 79)

8 AUGUST 1999

JDJ FEATURE

The Java-CORBA Way to
Large-
Scale
Software

Design

Large-
Scale
Software

Design
WRITTEN BY E MING TAN

How to
extend
the service
broker In the CORBA-based, service broker framework, the data that’s

required and shared among various heterogeneous systems is

coordinated in a synchronized manner by a server process, yet

maintained locally by each participating system.

9AUGUST 1999

Although lots of articles mention how to design a large-scale system,
they often lack implementation details, due partly to the complexity of
the issues involved. In this article I’ll provide an example of a simple,
generic and yet useful implementation of a large-scale system based on
Java-CORBA architecture.

Background
Designing and writing large software is very different from writing a

program that can be completed in one day. This article will be particu-
larly useful to those of you involved in large-scale software development.
My earlier article (JDJ Vol. 4, issue 1) proposed a way to design a loosely
coupled, highly maintainable software product centered around an

object known as the service broker. Thus some terms used in that article
will be used here without redefinition or explanation. This article dis-
cusses how to extend the service broker based on CORBA architecture
and written purely in Java.

CORBA-Based Service Broker
Overview

In a real business situation, supporting computer systems may exist
in a heterogeneous environment. It’s likely that each system consists of
different subsystems, each maintaining their own data using methods

chosen by their management. For example, a typical company may have
an order entry system, a service delivery system and a billing system.
Assuming each system was designed and maintained by different
departments, you’ll have a big headache if there’s no coordination
between them. Problems arise when the systems need to share common
data. This is when a CORBA-enabled service broker is useful.

Technically speaking, each local application will instantiate its own
copy of a client service broker (SBroker), which acts as a local proxy
object for the remote object of the service broker. The SBroker proxy
object can also become a factory object for each application, if there is
such a need. This would reduce the overhead for naming service lookups
from the CORBA client application.

The remote service broker server is implemented as a normal CORBA
server. A client service broker can communicate via IIOP with a compo-
nent that’s a reachable CORBA object, called a service broker moniter,
hosted by the service broker server. If you look at the SBroker code in
Listing 1, you’ll notice the getMonitor method and mon object of type
monitor. This is the method that returns a CORBA object reference of the
remote service broker server object, which is mon in this case. Referring
to Listing 2, the service broker monitor basically allows a client to:
• Register (add) itself to listening to a specific broadcast event.
• Remove itself from event listening.
• Broadcast an event to (notify) the listening application.

The Implementation
In this design I’ve chosen a pure Java-based ORB, JacORB (version

0.9f2) courtesy of Gerald Brose (brose@inf.fu-berlin.de) since it’s a free
open source with more features than the Java IDL of Java 2 (JDK 1.2)
from Sun Microsystems. It allows you to test the example in this article
without a commercial ORB product. However, the design should work
with other commercial ORBs as well with minimal modification.

JacORB is used in the CORBA-enabled service-broker framework in
the following areas:
• The COSS naming service to allow distributed listeners to locate the

service broker in a standard CORBA way
• To provide the ORB client and the ORB server with listeners to register

event types they’re interested in receiving and for the event notifica-
tions of sources to listeners via the service broker

• Calling back of the service broker’s monitor to the listeners – thus the
ORB clients (in this case the listeners) have to be CORBA objects too

The service broker server architecture depicted in Figure 1 consists of
a monitor CORBA object that has an event manager running as a sepa-
rate thread, an optional Object Design, an ObjectStore ODBMS database
for persistency and an ORB server, which is JacORB in this case, running
a naming service as well as an Interface Repository (IR) daemon.

Because broadcast events in this environment are asynchronous, I’ve
used ObjectSpace’s JGL 3.0 class library to maintain the events; it’s pop-
ular and has many standard Java generic classes, plus I’m using JDK 1.1.6
to compile the framework. By the time this article is published, the JGL
class library should be part of Java 2 and known as the Collection API.

JGL’s Queue class is used in the following manner (see Listing 2):
• To keep event objects in the queue so they’re processed in the order

they were received by the service broker
• To avoid lost events when more than one source (subsystems) tries to

broadcast at the same time
• To delete an event from the queue if the call back inside a listener is

returned successfully

To allow a more robust operation in this service broker framework,
the server, source and listeners have to operate in a way that facilitates
fault tolerance. For instance, whenever the service broker server wakes
up (initial start or restarted from the last crash/hanged), it’ll always
process the event currently on the top of the queue, if any event exists.
When a listener wakes up (initial start or restarted from the last
crash/hanged), it’ll always look for the service broker’s monitor object

10 AUGUST 1999

and register itself with the monitor. Whenever a
source wakes up (initial start or restarted from
the last crash/hanged), on the other hand, it will
broadcast a new event via the service broker
only if the previous event is processed and
removed from the queue by the event manager.

The next JGL class used is HashMap. It’s
used to keep the object reference of the listen-
ers to facilitate the event-manager thread to call
back the listeners. In this design example (see
Listing 2) the listeners are associated with their
unique application ID as the key.

Alternatively, one can try out Object Manag-
er JGL version 3.1 for ObjectStore, available free
from Object Design’s Web site. The modified
version of the JGL library, which directly sup-
ports persistency via a scalable ObjectStore
database, is known as dJGL. According to Object
Design, ObjectStore PSE Pro 3.0 can recover
from an application failure or system crash. If
an application (in this case the service broker
server) fails during a transaction, when you restart it, it’ll return to the
way the database was prior to the transaction. If an application fails dur-
ing a transaction commit, when you restart it, the database will be either
the same as it was before the transaction or it will reflect all of the trans-
action’s changes. It depends on how far along in the commit process the
application was when it terminated. ObjectStore ODBMS is a full-blown
enterprise object database. It’s also compatible with JDK1.2 Collection
API, but the details aren’t covered in this article.

The Assumptions
Before I show you the codes and explain them in depth, I’ll share the

two most important assumptions I’ve made in this design. While these
assumptions may not be true in your application environment, they
serve the purpose here.
• A source can never broadcast a new event until the previous one has

been processed by the event manager and consumed by the listening
application.

• Applications with the same application ID can’t listen to a single
event; in other words, each application can only listen to a particular
event that’s closely associated with its application ID.

If you need to broadcast more than one event at any time, a slight mod-
ification of the service broker server codes is needed. A more involved
change is necessary if you wish to broadcast a specific event to more than
one listening application. Some may argue that the word broadcast itself is
a misnomer, since broadcast often means the target is more than one enti-
ty. Remember, the example given here is an oversimplified implementa-
tion. If there’s a need to broadcast to more than one listening application
using the same event, the event manager has to call back all the applica-
tions that are interested in the event before removing the event from the
queue. Multiple sources broadcasting to a listener with the same event is
also not advisable, though it’s possible with some modifications.

A Typical Scenario
The easiest way to show you how to code under this CORBA service

broker framework is to imagine how it works in a typical business envi-
ronment. Imagine there are a few systems in this environment and they
all communicate with the service broker server via IIOP protocol. All
applications generally keep their own data, but they don’t have to. Fig-
ures 2 and 3 illustrate the steps involved in this process.

When the service broker starts up, it will bootstrap its CORBA object
and make it available to all source and listener applications (see Figure
2a). In this case the server registers its monitor object with the COSS
naming service. After the server is ready, the framework is ready for vir-
tually any source application to broadcast an event as well as any listen-
ing application to process it.

Assume that Application 2 needed to send
data to Application 1. Typically, Application 1
will have to register itself with the service broker
server. Remember, in this framework every
application will have a local service broker
proxy called SBroker. That’s why you see a D-
shaped capsule-like structure on top of each
application. SBroker encapsulates the CORBA
implementations from all participating applica-
tions in this framework. In other words, a source
application that needs to broadcast an event
(publish an event via the service broker server)
to a listening application has to instantiate an
SBroker object. The listening application has to
do the same thing in order to subscribe to the
event (pushed by the server once it’s available).
This is done by registering itself as a listener
with the server (see Figure 2b).

The following code snippet shows you how
to instantiate the monitor object from an appli-
cation and obtain the remote object reference:

monitor mon = (new SBroker()).getMonitor();

Once the remote instance of a service broker object is obtained, regis-
tering listeners or broadcasting an event are straightforward steps. To reg-
ister as a listener (see Listing 3 for a sample listerner code), an application
invokes addRadioBroadcastListener of the monitor object. The following
code snippet shows you how to do that:

//=== instantiate a copy of the listening application
RbListener rbListener = new RbListener();
//=== register itself as one of the radio listeners
boolean ret = rbListener.mon.addRadioBroadcastListener(rbListener);
---------------------- (1)

If you need to remove an application from listening, the application
invokes the removeRadioBroadcastListener method of the monitor
object as follows:

//=== remove itself from listening if there is a need
rbListener.mon.removeRadioBroadcastListener(rbListener);

How does a source broadcast an event? By notifying the service bro-
ker (see Figure 2c), which is done by invoking the notifyRadioBroad-
castListeners method of the monitor object. The following code snippets
show you that:

//=== instantiate a copy of the source application
RbSource rbSource = new RbSource();
//=== assuming that event id is equal to application id
RbEvent evt1 = new RbEvent("800");
---------------------- (2)
//=== setting the event type for listening application
evt1.setEventType(rbSource.getEventID1());
---------------------- (3)
//=== broadcast now
boolean ret = mon.notifyRadioBroadcastListeners(evt1);
---------------------- (4)

As you’ve noticed by now, to broadcast an event via the service broker
server by sending a notification message involves more steps than becom-
ing a listener. In line 2, we’re basically creating an event object to be sent to
the listener. In this case it’s assumed the event ID is the application ID
(which is 800). An application ID is just a unique number assigned manu-
ally by the application developer. If the same ID has already been allocated
to another registered application, registration of the new listener with the

Event
Manager

Monitor

ORB

IR
daemon

Naming
Service

CORBA Interface

FIGURE 1: A simplified CORBA-based service
broker diagram

11AUGUST 1999

EnterpriseSoft
www.enterprisesoft.com

12 AUGUST 1999

monitor will fail (see line 1). Next (in line 3), we set the type of the event,
since an application can have multiple data that needs to be processed in
different ways. Each event type may be associated with one or more data.
The real pushing of an event to the service broker is done in line 4. Never-
theless, if the previous event (which has an ID of 800) is still not processed
by the listener, this method call would fail with a return status of false.

The role of the service broker server is to receive events from the
source and push them to the listener by calling back the broadcastPer-
formed method of the listener. In our scenario the service broker will call
back Application 1 (shown in Figure 3a). Thus a listener must be a type
of org.omg.CORBA.CORBject object too (see Listing 4).

What follows is the most critical step as far as the business environ-
ment is concerned – the exchange of data between applications. Appli-
cation 1 (listener application) retrieves the data from Application 2
(source application) via a peer-to-peer communication (see Figure 3b).

Surprisingly, this framework makes no assumption of any method to
achieve that. You may ask why. A simple answer is because it’s meant to
be generic! Nevertheless, one may find getDataRetrieveMethod and get-
DataStoreMethod methods of the RbEvent class useful (see Listing 5).
They’re the placeholders where you can specify how to retrieve the data
from the source application and/or how to store the data in the listening
application (e.g., if the data format is different). It may include proper-
ties like a host name, FTP server name, data server name, user name and
password, or even jdbc strings. It can even be the data itself, e.g., the
XML data. It’s up to you to decide which methods you’re most comfort-
able with or are most suitable for your specific environment.

The following code snippet shows you an example of the inside of a
listening application:

public String getDataRetrieveMethod() {
return
"sourceFileDir=/WebApp/Download"
+ "&"
"sourceFile=T9806812.txt"
+ "&"
"ftpUrl=146.135.30.167"
+ "&"
"ftpUsr=A04"
+ "&"
"ftpPwd=A04A04";

}
public String getDataStoreMethod() {

return
"listenerFileDir=/usr/local/WebApp/Download"
+ "&"
"listenerFile=T9806812.txt";

}

In the example above, the source application happened to be a legacy
system with no other means of communication except FTP protocol. You’ll
notice that the getDataRetrieveMethod returns enough information for
retrieval purposes. In this case the listening application is a UNIX box and
the downloaded file is local as far as the listener is concerned. Therefore it
doesn’t need to include much information in the getDataStoreMethod
method. Of course, a proper way to set all these properties is via setter
methods such as setDataRetrieveMethod and setDataStoreMethod.

Last, as soon as the data is fully transferred from Application 2 to Appli-
cation 1, the callback returns control to the event manager of the service
broker. When this happens, the event manager removes the event object
from the queue and continues with the next event, if there’s any in the queue
(see Figure 3c). The whole process repeats itself relentlessly (from Figures 2b
to 3c), and now we have a new service broker framework based on CORBA.

What Did I Miss?
Now, after going through one specific scenario, I guess you have lots

of questions. It sounds too easy and is it of any practical value in a busi-
ness environment? Yes and no. The answer is Yes if you’re looking for a
generic framework and you don’t mind further customization. If you’re
looking for a full-blown framework, you’ll be disappointed. You may
want to consider some other commercial products available. This frame-
work doesn’t specify how data is exchanged among various sources and
listeners. Furthermore, since it’s meant to be simple, each event type is
forced to directly associate with the listener’s application ID. The listen-

Service
Broker

Application
2

Application
n

IIOP

IIOP IIOP IIOP

IP Network

Application
1

Service Broker
server will bootstrap
its monitor object
with CORBA naming
service when started

Service
Broker

Application
2

Application
n

IIOP

IIOP

register

notify

IIOP IIOP

IP Network

Application
1

Application 1 which
is acting as listener
will contact monitor
object and register
itself as a listener

Service
Broker

Application
2

Application
n

IIOP

IIOP IIOP IIOP

IP Network

Application
1

Application 2 which
is acting as a source
broadcasts an event
for Application 1 via
Service Broker

FIGURE 2A

FIGURE 2B

FIGURE 2C
FIGURE 2: Service broker processes 1–3

14 AUGUST 1999

er’s registration with the service broker server would fail if another lis-
tener with the same ID has already registered. New-event generation
from a source application is blocked until the previous event is con-
sumed by the listener application. In other words, the event buffer size is
only size 1 and the event is considered consumed as soon as the callback
of a corresponding listener (broadcastPerformed method) returns.

The event manager is very simple too. Currently, a listener’s object ref-
erence isn’t purged from the HashMap even if the listener crashed or died,
resulting in an error when the listener restarted and tried to register itself
again with the same application ID. If this happens, the easiest way to work
around it is to restart the service broker server and all applications involved
in the framework. Due to a similar problem, if a source tries to broadcast an
event to an invalid listener (crashed/died or not running for whatever rea-
son), the listener-bound event isn’t processed and other subsequent events
(if any) are blocked. The event should have been discarded if its associated
application ID is no longer valid and the source application should be
informed about the status of the event. Another way of overcoming this is
to set a certain timeout period for each event processed so that if the cor-
responding listening application is unreachable, the event will be rendered
invalid. Once the event is made invalid, the source application will realize
this just before it’s about to generate a new event for the listener.

Other Considerations
One of the most critical features of an enterprise solution is the trans-

action. The processing of events by listeners and the subsequent
removal of the events from the queue is not an atomic operation. What
happens if after a listener has processed an event it fails just before the
event is removed from the queue by the event-manager thread? How
does it affect the integrity of the data when the listener wakes up again?
To answer these questions, I used ObjectStore PSE Pro and the persistent
version of JGL class library, dJGL, which enabled me to provide a scalable
transactional capability to this service broker framework.

The following code snippet shows how minimal additions (in blue)
into the service broker server codes (see Listing 2) will provide the trans-
actional support commonly required in business environments:

...
//=== use djgl class library instead of jgl
import com.objectspace.djgl.*;
//=== add ObjectStore package too
import COM.odi.*;
public class monitorImpl extends Thread implements monitor

...
Database db = null;
Transaction tx = null;
monitorImpl() {

Session.create(null, null).join();
db = create("Queue.odb");
tx = Transaction.begin(ObjectStore.UPDATE);

queue = new Queue();
...

}
private static Database create(String dbName) {

try {
Database.open(dbName,

ObjectStore.OPEN_UPDATE).destroy();
} catch (DatabaseNotFoundException e) {
}
return Database.create(dbName, 0777);

}
...
public void run() {

...
while(true) {

tx = Transaction.begin(ObjectStore.UPDATE);
queue = (Queue)db.getRoot("queue");
if (!queue.isEmpty()) {

...
}
tx.commit();

}
}

...

Service
Broker

Application
2

Application
n

IIOP

IIOP IIOP IIOP

IP Network

Event manager
thread receives the
event in its queue
and calls back the
relevant listener

Service
Broker

Application
n

IIOP

IIOP IIOP IIOP

IP Network

Application
1

Data is transferred
from the source
application to the
listening application

Service
Broker

Application
n

IIOP

IIOP IIOP IIOP

IP Network

Application
1

Event is removed
from the event
queue as soon as
the callback returns

callback

Application
1

Application
2

Application
2

FIGURE 3C

FIGURE 3B

FIGURE 3A

FIGURE 3: Service broker processes 4–6

15AUGUST 1999

CloudScape
www.cloudscape.com

16 AUGUST 1999

Besides the transactions, you should consid-
er the security issues as well. A mechanism
needs to be in place so that only valid or autho-
rized sources or listeners can broadcast events or
register and receive the events, respectively.
Other enhancements may include cross-system
exceptions mapping and a centralized logging
facility.

Conclusion
In a nutshell, this CORBA-based service

broker framework allows required data that’s
shared among various heterogeneous subsys-

tem applications to be synchronized by a serv-
er process, yet maintained locally in each
application. It provides centralized control of
the means of retrieving and storing data adver-
tised to the service broker by the participating
applications. It also provides a standardized
way for a CORBA-based interface as an inter-
process communication among various enter-
prise applications. Best of all, it allows compa-
nies not only to keep their existing “legacy” sys-
tems but to extend their functionalities as well
as their roles, via Java and distributed CORBA-
based technology.

Reference
Lewis, G., Barber, S. and Siegel, E. (1998). Program-
ming with Java IDL. Wiley Computer Publishing.

AUTHOR BIO
E Ming Tan was the chief architect of corporate intranet-based
paging applications at Singapore Telecom. He has worked with Cable
& Wireless, Inc., and is currently working with MCI Worldcom on a
Web-based customer billing system. He can be reached at
futurewave@iname.com.

(see source code file SBroker.java for details):
public class SBroker {

public monitor getMonitor() {
}
monitor init() {
}
public static void main(String[] args) {
}
static void out(String msg) {
}

}

(see source code file monitorImpl.java for details):
public class monitorImpl extends Thread implements monitor {

monitorImpl() {
}
public sbroker.listener getApp(int id) {
}
public int getAppID(sbroker.listener rbListener) {
}

boolean getEventProcessed(sbroker.event evt) {
}
public boolean

notifyRadioBroadcastListeners(sbroker.event rbEvent) {
}
public boolean addRadioBroadcastListener(sbroker.listener

rbListener) {
}
public boolean removeRadioBroadcastListener(sbroker.lis-

tener rbListener) {
}
private void out(String msg) {
}
public void run() {
}

}

(see source code file RbListener.java for details):
class RbListener extends Thread implements RadioBroadcastLis-
tener {

public RbListener() {
}
public int getAppID() {
}
public void broadcastPerformed(sbroker.event rbEvent) {
}
public static void main(String argv[]) {
}
public void run() {

while(true) {};
}

}

(see source code file RadioBroadcastListener.java and sbro-
ker.listener.java for details):
public interface listener extends org.omg.CORBA.CORBject {

void broadcastPerformed(sbroker.event rbEvent);
}

(see source code file RbEvent.java for details):
public class RbEvent extends java.util.EventObject implements
java.io.Serializable, sbroker.event {

public RbEvent(String eventID) {
}
public String getEventID() {
}
public void setEventType(String evt) {
}
public String getEventType() {

return eventType;
}
public String getDataRetrieveMethod() {
}
public String getDataStoreMethod() {
}

}

Listing 5

Listing 4

Listing 3

Listing 2

Listing 1

futurewave@iname.com

Developmentor

www.developmentor.com

17AUGUST 1999

Cyrus Intersoft
www.cyrusintersoft.com

But on to more important matters of
state: churning out this month’s column.
This is the month after the biggest
month in our developers’ calendar:
JavaOne. If I am a good boy and manage
to finish the show report for this issue,
you’ll find it lurking somewhere in these
pages not so far away from this column.
That said, I shall not bore you twice and
make you read the same drivel over
again.

As my regular readers will recall, we’re
always on the lookout for developers
who can do a day’s work without our
having to tell them constantly what Java
really is. Well, this month we have a new
recruit starting with us, and so far so
good. He’s performing a sterling job. The
frightening thing is that he has a person-
ality, which doesn’t fit your typical hard-
core programmer. I guess we’ll have to
beat that out of him!

Anyway, why am I telling you this?
Before sending our new soldier to the
frontline to battle with client code, we
put him on some internal projects that

needed attention. Nothing too taxing.
Basically he had to create a couple of
additional classes based on some estab-
lished core classes. He performed
admirably and well within the time allo-
cated. I asked him how the testing went.
He said wonderfully well, that all the
methods worked. Fantastic.

Hold on…what do you mean all the
methods worked? On closer inspection
it transpired that our new man had
merely called the top-level methods and
never checked for anything going awry
internally. Bless him. Such blind faith.
Now this wasn’t his fault directly. He had
never really tested code before, and
since his test case worked it didn’t occur
to him to test a scenario that might be a
little out with the necessary parameters.

But who can really blame him? It
reminded me so much of me when I
started on my long journey to Java ful-
fillment. I was scared to test my code in
case my beautiful creation didn’t live up
to my expectations. I just assumed –
hoped is more like it – that it would
stand its ground in all environments. Or
was it more laziness? Hmmm…the more
I think about it, the more I better leave
this thread alone before my client base
loses complete faith in me!

That Left-Out Feeling
I know. I promised I wouldn’t mention

JavaOne, but please excuse me. I have to
get this out of my system.

Being located in one of the far-flung
corners of the globe, Scotland, you
sometimes feel left out. You know, the
one that gets picked last for the school
football team, or the one that never gets
invited to the party. You know there’s a
whole world going on out there, but
you’re just never sure that you’ll fit in.
Well, running the n-ary empire from
here, we sometimes feel the party is get-
ting down somewhere else and the
world has forgotten all about Java and
has moved on without telling us. So
when an opportunity like JavaOne raises

its head, I make the annual pilgrimage
to San Francisco.

It’s not for personal gratification, you
understand. It’s for the good of the com-
pany (I just want to get that point across
in case any of my directors are reading
this and trying to figure out why I have
absconded to California for a jolly).

There’s really only one reason to
attend JavaOne. Ironically, it’s not to
hear people talk, or to walk around
booths packed full of vendors peddling
their wares. No. It’s to meet people or –
as we say in the corporate jungle – “to
network.”

There’s a rich tapestry of individuals
that make up this wonderful Java uni-
verse we’ve chosen to partake of, and I
had the privilege of meeting some of
them. I’ll introduce some of the more
colorful ones to you here.

For those of you that attended and
wondered which one I was, that’s an
easy one to answer. Think hard. Do you
remember up in the Media Mall there
were lots of big, stupid-looking cos-
tumes walking around, depicting scenes
of Java (Java in the loosest sense of the
word, let me assure you)? Well, I wasn’t
one of them. However, I was the one
with the Scottish kilt loitering around
the SYS-CON Radio panel. You may have
been too scared to come up and intro-
duce yourself – and who’d blame you?
But for those that were brave enough, I
thank you. It was indeed a pleasure to be
able to put a face to a lot of you.

One of the first people I had the good
fortune to meet and get to know rather
well over the course of the week was one
Rick Ross. Rick is a man I’ve shared col-
umn space with, being another JDJ
columnist himself, but I had never met
the man in the flesh. What a character
Rick is! After meeting the man, I made a
bet with myself that should he ever run
for office, not much would stop him.
He’s a born talker, which is one of the
reasons the Java Lobby is so popular.
For those of you not aware of the Java

An eclectic assortment of Java hors-d’oeuvres

18 AUGUST 1999

WRITTEN BY
ALAN WILLIAMSON

Party! Party! Party!

I
don’t know about you, but these months are shooting by at
a tremendous rate of knots. Here we are again, into the lat-
ter half of the year…and I was just getting used to being
back after Christmas. It’s all very exciting, racing up to the
day that dare not speak its name: yes, the big millennium
turnover. Boy, am I looking forward to that day!

S T R A I G H T T A L K I N G

19AUGUST 1999

Borland JBuilder
www.borland.com/jbuilder

20 AUGUST 1999

Lobby, get yourselves to the Web site,
www.javalobby.org/, and join the cru-
sade. I see Rick as the thinking man’s
Jimmy Hoffa, rallying around us mere
mortals, making sure Java is heading on
a clear and set course. If you ever get the
chance to meet him, pin the bugger
down and ask him anything that con-
cerns you about Java. I’ll bet my grand-
mother’s left leg that Rick has a thought
on it. Go on, try it. And if he seems
annoyed, you never read this. We never
had this conversation!

But having a blether with Rick was a
joy. He has many of the same thoughts
that we outpost developers hold. Which
assured me that maybe the party wasn’t
going on without us.

Back to My Pilgrimage
One of the things about developing so

remotely is that, unlike our Silicon Valley
counterparts, the chance of us literally
bumping into the competition is highly
unlikely. (Unless, of course, Dolly, our
amazing cloned sheep, has had a Java
chip implanted in there by those clever
scientists at Edinburgh.) That aside,
while standing at the SYS-CON booth
waiting for something that at this point
escapes me, a man sidled up and started
to talk to me. I think he was compli-
menting me on my column, but I could
be mistaken. Anyway, the conversation
drew to a close and for some reason I
asked for his business card. When I read
it I was bowled over. It was probably the
initial shock at seeing his contact infor-
mation that has made the first point of
contact so blurry. (You know who you
are, so if I have this slightly wrong, then
please forgive me.)

The card I held before me represented
our biggest competitor. First time this
ever happened to me. Of course, once I
introduced myself and the particular
project we competed with them on, he
knew who we were. We then went for a
sit-down while he fetched his CEO. It
was all quite amicable. We danced
around one another like male peacocks
trying to prise information out of one
another. So that’s what the enemy looks
like....I jest.

I have to give a big thanks to Mary
Hancock and Clint Dalton for allowing
me to hang with them over a number of
evenings. Being European, I felt like a
fish out of water at times in the throes of
California, so these budding reporters
from ServletCentral.com kept me on the
straight and narrow. I’d like to give them
full credit for trying. Mary had her cam-
era with her all week and was clicking
lots of showpieces. Every so often Mary
and Clint attempted to get conclusive
pictures of what really lies under a

Scotsman’s kilt. Well, I can proudly say
the legend of what is underneath there
remains a mystery.

So meeting people at JavaOne was the
most important thing. Be proud of the
industry you’re in, and make sure you
get yourself out there. There are some
excellent characters about, and I could
fill a whole magazine just chattering
about them, but I won’t. This would
spoil the fun for you. But before I leave
this, if you’re ever around a Java Lobby
meeting or up near Seattle, be sure to
look up what have to be the coolest
brothers in the world of Java: the
Ramadan lads from 4thpass. Mazin and
Zeyad are the Java equivalent of Bill and
Ted, and I highly recommend you speak
to these guys if you ever get the chance.

Mailing List
At JavaOne many of my readers and

subsequent mailing-list attendees came
up and said hello. They assured me
they’d be inspiring the list with many
new and varied topics of conversation.
With that in mind, here’s my monthly
plug for the list. To join, send e-mail to
listserv@listserv.n-ary.com with sub-
scribe straight_talking-l in the body of
the message. From there you’ll get
instructions on how to participate.

Salute of the Month
There are many salutes I could award

this month and some of them I men-
tioned earlier in this column. But one
person I have to thank is Jim Driscoll,
from the ranks of management at Sun.
Now let me explain this. I met Jim in per-
son over a year ago, and had been in
constant e-mail contact with him for

around eight months earlier than that.
Jim is one of the original Java Servlet
architects, and it is through this that we
had gotten to know one another. For me,
Jim was the embodiment of what we
perceive a Silicon Valley geek to look
like: long hair, unshaven, knee-deep in
code and always going somewhere to
check his e-mail. Well, I nearly didn’t
recognize him when he came up to me
at JavaOne. He’s gone all corporate. The
hair is cut, the face is shaved and he’s no
longer coding. He’s management now,
climbing that corporate ladder. Jim’s
professional coding days are gone and
he’s now resigned to watching as others
wrestle with the joys of threads and
other goodies Java has hidden up her
sleeve. So Jim, we salute you for a job
well done. May the rung above you
always be free!

Book Review
Last month I promised you a review

of Larry Ellison’s book once I finished it.
Well, I finished it, and what a read it
turned out to be! I can’t even begin to tell
you the sort of antics our man at Oracle
has been up to.

Regular readers will know the prob-
lems I (and many of you) experienced
with Oracle’s JDBC drivers. Now I know
why. If you read this book be prepared
for an amazing tale. I was keen to learn if
the contents of the book were true so I
went off to the Oracle booth at JavaOne
to get some insider information. I have
to say I am rather impressed by the way
none of the Oracle people I spoke to had
any idea the book even existed, let alone
the contents. They acted dumb very
well. Or maybe they weren’t acting,
because the same people had never
heard of the magazine you’re holding in
your hands now – the biggest Java circu-
lation magazine in the world and they
had never heard of it. Hmmm, not con-
vincing, methinks. I think the brain-
washing at Oracle has gone a little too
far and way too much information has
been erased. But I did manage to speak
to some ex-Oracle employees, including
a couple that actually were mentioned
in the book, and they assured me it’s
true. So all I can say is read it, and get
back to me on our mailing list. I’d love to
talk about it.

Now that I’m safe and sound back in
my corner here in the lowlands, I can
start being paranoid again about the
party that no one is inviting us to. Keep-
ing my eye on these supercloned Java
sheep, I bid you farewell. Catch you next
month.

AUTHOR BIO
Alan Williamson is CEO

of n-ary (consulting) Ltd,
the first pure Java

company in the United
Kingdom. A Java

consultancy company
with offices in Scotland,
England and Australia,

they specialize solely in
Java at the server side.

Alan is the author of two
Java Servlet books and

contributed to the Servlet
API. He can be reached

at alan@sys-con.com
(www.n-ary.com) and

welcomes all suggestions
and comments. alan@sys-con.com

S T R A I G H T T A L K I N G

I think the
brainwashing
at Oracle has
gone a little
too far and

way too much
information

has been erased.

‘‘

’’

21AUGUST 1999

ObjectSwitch
www.objectswitch.com

JavaBeans has been at the center of many
new paradigms and technologies that have
emerged since its inception. Among emerging
technologies, Enterprise JavaBeans has gener-
ated tremendous interest in the business com-
puting community. However, a common mis-
conception is that an Enterprise JavaBean is an
extension of a “plain vanilla” JavaBean with
enterprise functionality.

While both JavaBeans and Enterprise Java-
Beans are software component models, their
purpose is different. A JavaBean is a general-
purpose component model, whereas EJB, as
the name suggests, is a component model that
is enterprise specific. Even though these mod-
els have entirely different architectures, they
adhere to certain underlying principles that
generally govern a software component model.
We’ll use these principles and the basic charac-
teristics of software components to compare
JavaBeans and Enterprise JavaBeans.

Goals
The underlying theme of both JavaBeans

and Enterprise JavaBeans is, as Sun puts it,
“Write once, run anywhere” (WORA). Accord-
ingly, the primary objective of both models is
to ensure portability, reusability and interoper-
ability of Java software components.

JB
JavaBeans takes a low-level approach to

developing reusable software components that
can be used for building different types of Java
applications (applets, stand-alone apps, etc.) in
any area. Whether you’re developing a simple
applet or a complicated application, JavaBeans
can be integrated into your system with ease.
Already a large number of vendors offer Java-
Beans in a variety of fields. Some JavaBeans may
be common to multiple fields. A chart bean, for
instance, can be used in scientific, engineering
and business computing applications.

EJB
Enterprise JavaBeans takes a high-level

approach to building distributed systems. It
frees the application developer to concentrate
on programming only the business logic while
removing the need to write all the “plumbing”
code that’s required in any enterprise applica-
tion. For example, the enterprise developer no

longer needs to write code that handles trans-
actional behavior, security, connection pool-
ing, networking or threading. The architecture
delegates this task to the server vendor.

What Are Beans?
JB

A JavaBean – a bean – is a reusable software
component that can be visually manipulated
in a builder tool. Builder tools help you assem-
ble applications by visually connecting beans.
This doesn’t mean you can’t build applications
in the conventional way. If you prefer, you can
hand-code applications by using beans. When
you build applications by visual connection,
no coding is involved (though in semivisual
tools you may have to write some code).

Builder tools also help you customize beans
visually. Once customized, you can save beans
as serialized prototypes (.ser files). When beans
are part of an application, they run just like any
other object. They are instantiated differently,
though, as saved beans have to be resurrected
from their serialized prototypes.

EJB
An Enterprise JavaBean – an EJB – is a

reusable server-side software component.
Enterprise JavaBeans facilitate the develop-
ment of distributed Java applications, provid-
ing an object-oriented transactional environ-
ment for building distributed, multitier enter-
prise components. An EJB is a remote object,
which needs the services of an EJB container in
which to execute.

Architecture
JB

The JavaBean specs define a com-
ponent model to build, customize,
assemble and deploy general-pur-
pose Java software components.
In the JavaBean model, the
structure and behavior of a
bean is described by three
basic features: properties,
methods and events.

Properties are a bean’s
named attributes that can be
edited to customize a bean.
Methods describe a bean’s behav-
ior. Events serve two purposes:

1. Bean connection: When a bean is running in
a builder tool, events enable visual connec-
tion.

2. Notification: When a bean is running in an
application, events notify occurrences and
pass data from source to target.

When a bean is inserted in a visual builder
tool, its exposed properties, methods and
events are discovered through the twofold
process called introspection, which involves:
1. Discovery from the explicit information,

which is provided by the bean provider
through a bean-specific class called BeanInfo.

2. Automatic discovery of a bean’s features by
using the reflection API. To facilitate this,
methods in the bean have to adhere to cer-
tain naming conventions as stated in the
JavaBeans specs.

The JavaBeans 1.0 specification dealt mainly
with the design-time behavior of JavaBeans. It
was later augmented by a set of three specifica-
tions code-named “Glasgow” to address some
runtime issues. The “Extensible Runtime Con-
tainment and Services Protocol” spec, which is
part of Glasgow, describes the relationship
between a bean and its container at runtime. As
shown in Figure 1, a bean that conforms to this
spec can be part of a nested containment struc-
ture and can utilize arbitrary services from its
container.

22 AUGUST 1999

JDJ FEATURE

JavaBeans vs Enterprise
WRITTEN BY LAWRENCE RODRIGUES AND GOPALAN SURESH RAJ

JavaBeans
EJB

The Enterprise JavaBeans spec defines a serv-
er component model and specifies how to create
server-side, scalable, transactional, multiuser
and secure enterprise-level components. Most
important, EJBs can be deployed on top of exist-
ing transaction processing systems including
traditional transaction processing monitors,
Web, database and application servers.

As shown in Figure 2, a typical EJB architec-
ture consists of:
• An EJB server
• EJB containers that run on these servers
• Home objects, remote EJB objects and Enter-

prise beans that run in these containers
• EJB clients
• Other auxiliary systems like the Java Naming

and Directory Interface (JNDI), the Java Trans-
action Service (JTS) and Security services

Unlike JavaBeans that use introspection,
the EJB container uses the EJBMetaData class
to query an EJB for its metadata at any given
time.
Some of the advantages of pursuing an EJB

solution are:
• EJB gives developers architectural indepen-

dence.
• EJB is WORA for server-side components.
• EJB establishes roles for application devel-

opment.
• EJB takes care of transaction management.
• EJB provides distributed transaction support.
• EJB helps create portable and scalable solutions.
• EJB integrates seamlessly with CORBA.
• EJB provides for vendor-specific enhancements.

Application Development Roles
JB

Even though the JavaBeans specification
doesn’t mention application development roles
explicitly, we can infer the following two roles:
1. Bean provider: develops, customizes and

packages beans
2. Bean user: customizes, assembles and

deploys beans

EJB
The EJB specification assigns specific roles

for project participants charged with enterprise
application development utilizing EJBs. For
instance, business developers can focus on writ-
ing code that implements business logic.
Deployers of EJB can take care of installation
issues in a simple and portable fashion. The
server vendor can take care of providing support
for complex system services and make available
an organized framework for an EJB to execute
in, without assistance from EJB developers. The
EJB specification defines six primary roles:
1. Enterprise Bean provider: develops the

enterprise bean
2. Application assembler: connects the beans

together and packages them
3. Deployer: deploys the packaged bean on the

server
4. EJB server provider: provides a framework

that can execute the EJB containers with
transactional support

5. EJB container provider: provides tools to
generate the container classes that encapsu-
late the bean at runtime

6. System administrator: responsible for con-
figuration and administration of the envi-
ronment on which the EJB server executes

APIs
Both the JavaBean and the EJB

specs define APIs for bean devel-
opment, execution and deploy-

ment.

JB
•java.beans: The APIs from
the original JavaBeans spec-
ification are implemented in
the java.beans package,
which includes classes and
interfaces needed for both
bean providers and visual
builder tools.

• java.beans.beancontext: The APIs from
“The Extensible Runtime Containment and
Services Protocol” spec are implemented in
the java.beans.beancontext package, which
includes classes and interfaces for imple-
menting bean context services, bean con-
texts and bean context children. This pack-
age is available only in Java 2.

Both are core Java packages and are there-
fore available in different vendor implementa-
tions of Java.

EJB
• javax.ejb: The APIs defined in the Enterprise

JavaBeans specs are included in the javax.ejb
package, which is a Java standard extension.
In addition to this, EJB relies on the APIs
defined for the Java Transaction API (JTA),
the Java Transaction Service (JTS) and the
Java Naming and Directory Interface (JNDI).

Bean Characteristics
Structure and Behavior
JB

A bean, which is identified by a class, can
encapsulate any functionality. While the bean
class need not extend any other class, it needs
to implement the serializable or externalizable
interface either directly or through inheritance.
Even though a single class identifies a bean, its
functionality can be spread over many classes
through inheritance and delegation. An impor-
tant restriction on the bean class is that it
should have a no-argument constructor.

Since a bean’s internal structure and imple-
mentation details aren’t exposed, you can’t
extend a bean’s functionality as is. You can,
however, customize it to suit your application.
To extend a bean’s functionality, you need to
create a new bean by extending the existing
bean class. In other words, you need to use the
bean as a class library.

As we alluded to in the Architecture section,
a bean’s interface to the outside world (which
includes visual builder tools, other beans and
applications) is through its properties, meth-
ods and events. This interface is at the byte-
code level, which means there is no need to
recompile the bean when it’s assembled in an
application.

For the properties, methods and events to
be discovered through introspection, the relat-
ed methods have to follow certain signatures

23AUGUST 1999

The primary objective of both models

is to ensure portability, reusability

and interoperability of Java

software components

and naming conventions specified in the Java-
Beans specs. In addition, a bean provider can
also furnish feature descriptors through a
design-time-only class called BeanInfo, which
is specific to a bean class.

EJB
An EJB typically encapsulates business logic

that operates on data. An EJB’s interface to the
outside world is through its Home and Remote
interfaces. While the Home interface defines a
factory to create new beans and find existing
beans, the Remote interface defines the busi-
ness methods that the bean supports. Each
packaged EJB is identified by its Home interface
and its Home object, its Remote interface and
its EJB object, the enterprise bean class imple-
mentation and its deployment descriptors.

In EJB there’s no need for a BeanInfo class
because the deployment descriptors in con-
junction with the EJBMetaData class take care
of the bean description.

As mentioned earlier, an EJB isn’t represent-
ed by a single class, but by the enterprise bean
implementation, its home interface and its
remote interface.

A typical Home interface for a hypothetical
ParentEJBean would look like this:

import javax.ejb.*;
import java.rmi.*;

public interface ParentHome extends EJBHome {
Parent create(char relationship, String name)

throws CreateException, RemoteException;
Parent findByPrimaryKey(ParentPK parentKey)

throws FinderException, RemoteException;
}

You can’t inherit the Home interface
because of a problem with the create() meth-
ods; that is, the child will need to supply the
same create() methods as the parent, but the
methods will return different values (or remote
interfaces). Unfortunately, the Java language
doesn’t permit a class to have two methods that
differ in signature only by return type, so inher-
iting from Home interfaces is out of the ques-
tion.

You can, however, inherit implementations.
You could have a ParentEJBean implementa-
tion class and declare a ChildEJBean as:

public class ChildEJBean extends ParentE-
JBean {

}

You can thus reuse implementation code.
But with this approach you’ll run into the dif-
fering-only-by-return-type problem in the
ejbCreate() methods of bean-managed persis-
tence (see the sections on Types and Persis-
tence). This is because the methods will take
the same arguments, but will return different
primary keys. Since create() methods in Session
beans return a void, they don’t encounter this

problem. Container-managed EJB’s ejbCreate()
methods also return a void. Even though they
compile, there may be problems when the EJB
container generates code that actually returns
the primary key.

Inheritance in EJB is tricky, and you’re bet-
ter off using containment instead.

Visibility
JB

A bean can be visible, invisible or both. A
Stopwatch bean, for instance, can have the GUI
shown when it runs on the client side and
turned off if it’s running on the server side.
Even if a bean is invisible, it can be customized,
serialized and connected to other beans in
visual builder tools.

EJB
An EJB is a nonvisual remote object that

resides only on the server side.

Types
JB

Beans that conform to JavaBeans 1.0 specs
aren’t typed. The Glasgow spec, however,
allows two types of beans: Simple and Partici-
pant. A Simple bean isn’t aware of its container,
whereas a Participant bean actively partici-
pates in its container. A bean that conforms
only to the original JavaBeans 1.0 specs falls
under the Simple bean category. A Participant
bean, however, conforms to “Extensible Run-
time Containment and Services Protocol”
specs in addition to the original bean specs. A
Participant bean can also discover and utilize
arbitrary services from its container.

Table 1 gives a comparison of Simple and
Participant beans.

EJB
There are two primary types of EJBs: Session

and Entity beans. While an Entity bean has a
unique identity defined by its primary key class,
a Session bean has no unique identity. Multiple
clients can thus share an Entity bean. A Session
bean, on the other hand, is created, used and
destroyed by the client that created it. Each bean
has associated with it a context object (Session

context or Entity context) for its lifetime. Table 2
compares Session and Entity beans.

There are two types of Session beans: state-
ful and stateless. Similarly, there are two types
of Entity beans: container-managed persistent
entities and bean-managed persistent entities.
(See the following section for more details.)

Persistence
JB

Beans are persistent. In the context of Java-
Beans, beans are objects that can be saved and
resurrected. Persistence is achieved by saving a
bean’s internal states through serialization. As
mentioned before, a resurrected serialized pro-
totype of a bean can be included in an applica-
tion.

EJB
Stateful Session beans may have internal

states. Therefore, they need to handle activa-
tion and passivation. Passivation is the process
by which the state of a bean is serialized out
into secondary storage. Activation is the
process by which it is deserialized from sec-
ondary storage. These types of EJBs can be seri-
alized and restored across client sessions. To
serialize, a call to the bean’s getHandle()
method returns a handle object. To restore, a
call to the handle object’s getEJBObject()
method is used to return a bean reference.

Entity beans are inherently persistent
beans. There are two types of persistence in
Entity Beans:
• Bean-managed persistence: In BMP the

Entity bean is directly responsible for saving
its own state. The container doesn’t need to
generate any database calls. Hence, the pro-
grammer needs to hard-code persistence
into the bean through explicit JDBC or
embedded SQL calls.

• Container-managed persistence: In CMP the
EJB container is responsible for saving the
bean’s state. Since it’s container managed,
the implementation is independent of the
data source. The container-managed fields
need to be specified in the deployment
descriptor and the EJB container automati-
cally handles persistence.

24 AUGUST 1999

FIGURE 1: A typical Java application with beans and bean contexts

Bean
Service

Service

Bean Context

Bean Context

Application

Bean Context Bean Context

Bean Bean

Bean Bean

Bean

Bean

Bean

25AUGUST 1999

Cerrebellum
www.cerebellum.com

Customization
JB

Beans are visually customizable. You can
customize a bean by editing its properties.
Visual builder tools typically present proper-
ty sheets for this purpose. To generate prop-
erty sheets, builder tools use introspection.
The JavaBeans spec also provides an alterna-
tive to property sheets. It specifies an inter-
face called Customizer to enable bean
providers to build bean-specific customizers.
Such a customizer can also be invoked at run-
time. (See L. Rodrigues’s article, “On Java-
Beans Customization,” JDJ Vol. 4, issue 5, for
more details.)

EJB
EJB customization is a bit different from

JavaBean customization. There’s no concept of
a property sheet or a custom-written customiz-
er for an EJB. EJBs are customized using
deployment descriptors, which define the con-
tract between the ejb-jar provider and the EJB
consumer. It captures the declarative informa-
tion (information not included directly in the
EJB code) that’s intended for the consumer of
the ejb-jar file.

The two types of information in the deploy-
ment descriptors are the EJB’s structural infor-
mation and application assembly information.
In EJB 1.1 XML is used to define the deploy-
ment descriptors. EJB vendors may provide
tools that can be used by the ejb-jar provider to
create deployment descriptors.

Containment and Nesting
JB

A bean can contain another bean. The
original JavaBeans 1.0 specs didn’t explicitly
address containment-related issues. The
Glasgow specification defines the notion of
a logical bean container or BeanContext
(see Figure 1). A child bean in a container
can itself be a BeanContext, thus allowing
nesting of beans. In a BeanContext child
beans (Simple and Participant) can be
dynamically added and removed. They can
also access arbitrary services from the con-
tainer.

EJB
EJBs always run within an EJB container.

EJBs request different services from their con-
tainers and are aware of their environment.
Containers can’t contain other containers and
therefore there’s no concept of nesting in
EJBs. Each EJB is associated with a context
object (either a SessionContext or an Entity-
Context that provides information about the
EJB). The context object is the component’s
handle on the container, through which the
component can get transaction information,
security information and information from
the component’s deployment descriptor. The
EJB component calls into the Context object
through the SessionContext or EntityContext
interface.

Packaging and Deployment
JB

Beans are packaged in JAR files. The bean
provider has to provide a manifest file with
JavaBeans-related attributes in order to identi-
fy the bean class. A JAR file can hold more than
one bean. However, the JAR entry for each bean
class should have the Java-Bean attribute set to
true. An example:

Name: Spreadsheet.class
Java-Bean: True

Two more JavaBean-related attributes are
Depends-On and Design-Time-Only. A typical
bean JAR file contains design-time and run-
time bean classes, documentation, resources
such as images, and sound files.

EJB
EJBs are also packaged in JAR files. To iden-

tify the EJB class, the bean provider has to pro-
vide a manifest file in which the jar-entry for
the EJB class should have the Enterprise-Java-
Bean attribute set to true. An example:

Name: ~gopalan/BankAccountDeployment.ser
Enterprise-Bean: True

Application Assembly
JB

You can compose applications by visually
connecting beans in a builder tool or manually
by writing connection programs. The applica-
tion so developed can be an applet or a stand-
alone application. Beans for an application
need not come from the same vendor because
beans can be developed independent of one
another.

As we alluded to before, events act as inter-
faces between beans. Bean connections are
performed at design time and are unidirection-
al. The source bean fires an event and the tar-

get bean receives it. When the application
assembler chooses a source bean for connec-
tion, the builder tool discovers through intro-
spection the events fired by that bean. When
the application assembler chooses a target
bean for the selected source bean, the builder
tool discovers the compatible methods in the
target bean, again through introspection.

EJB
EJBs are assembled into larger deployable

applications. The input of application assem-
bly is one or more ejb-jar files produced by dif-
ferent providers. The output is one or more ejb-
jar files that contain Enterprise beans with
their assembly instructions. As we mentioned
in the Customization section, the application
assembly instructions have been inserted into
the deployment descriptors. EJBs too can be
developed independent of one another. Once
an EJB’s home and remote interfaces are
known, you can use them to create or find
them and to invoke methods on them.

Execution
JB

The execution phase consists of the instan-
tiation and running of beans.

Instantiation
Even though a bean is an object, it is instan-

tiated differently. Instead of the new operation,
beans are instantiated using the Beans.intanti-
ate() method. There are many flavors of this
method. A bean instantiation example:

// Obtain the Class Loader
ClassLoader loader =(Account.class).get-
ClassLoader ();

// Instantiate the Account Bean
Account account = (Account)Beans.instanti-
ate (loader, “Account”)

26 AUGUST 1999

Entity EJB

Home Interface &
Home Object

CORBA/IIOP
EJB Client

Servlet EJB
Client

EJB Client
Application

Applet EJB
Client

Session EJB

EJB Container

EJB Container
EJB Server

Remote Interface &
EJB Object

Home Interface &
Home Object

Remote Interface &
EJB Object

Database

FIGURE 2: A typical EJB environment with entity and session EJBs

27AUGUST 1999

Borland.com
www.borland.com

Running
As mentioned earlier, a bean is like any

other object when it’s running in an applica-
tion. Normally, methods in a bean aren’t direct-
ly invoked from other beans. The bean connec-
tions determine what methods need to be
invoked. Event adapters enable indirect
method invocation.

Beans can also be executed in a builder tool
at design time. As mentioned before, an impor-
tant requirement for a bean to run in a builder
tool is for the bean class to have a constructor
with no arguments. This is because the builder
tool can’t provide the constructor parameters.
When there are many constructors, it can’t
decide which one to use.

Java 2 has new Beans.instantiate() methods
to facilitate the instantiation of applets and
BeanContexts.

EJB
The EJB execution phase consists of locat-

ing, instantiating and running.

Locating the EJB
EJB clients locate the specific EJB container

that contains the enterprise Bean through the
JNDI. They then make use of the EJB container
to invoke bean methods. As you may be aware,
JNDI allows multiple directory services to
coexist and even cooperate within the same
JNDI client. Using JNDI, a user can navigate
across several directory and naming services
while seeming to work with only one logical
federated naming service.

Instantiating the EJBean
Once EJB clients obtain a reference to the

Home object, they can create the EJB by call-
ing its create() method or find EJBs by calling
its find methods. This creates the EJBObject
and the EJB component inside the EJB con-
tainer.

Invoking Methods on the EJBean
The EJB client can now use the remote

object reference to invoke methods on the
EJBean by invoking its remote methods, which
form the business logic of the component. For
example:

// get the JNDI naming context
Context initialCtx = new InitialContext ();

// use the context to lookup the EJB Home
interface
AccountHome
home=(AccountHome)initialCtx.lookup
(“com/gopalan/Account”);

// use the Home Interface to create a Ses-
sion Bean object
Account account = home.create (1234,
“Athul”, 1000671.54d);

// invoke business methods
account.credit (1000001.55d);

Transactions
JB

There is no explicit transactional support.

EJB
• Declarative transaction management: The

EJB container vendor is required to provide
transaction control. The EJB developer who
is writing the business functionality needn’t
worry about starting and terminating trans-
actions. However, for maximum flexibility,
the EJB spec provides for declarative trans-
action management. Six declarative modes
can be specified by the deployer:
TX_NOT_SUPPORTED, TX_BEAN_MAN-
AGED, TX_REQUIRED, TX_SUPPORTS,
TX_REQUIRES_NEW, TX_MANDATORY.

• Distributed transactional support: EJB pro-
vides transparency for distributed transac-
tions. This means that a client can begin a
transaction and then invoke methods on
EJBs present within two different servers
running on different machines, platforms or
JVMs. Methods in one EJB can call methods
in the other EJB with the assurance that
they’ll execute in the same transaction con-
text.

Security Services
JB

There are no special security APIs for Java-
Beans.

EJB
EJB provides authorization using the Java

security model. EJB server implementations
may choose to use connection-based authen-
tication in which the client program estab-
lishes a connection to the EJB server. The
client’s identity is attached to the connection
at connection establishment time. The
EJB/CORBA mapping specifies that the

CORBA principal propagation mechanism be
used. This means that the client ORB adds the
client’s principal to each client request. The
communication mechanism between the
client and the server propagates the client’s
identity to the server. Security in EJB 1.1 is
declaratively defined in the deployment
descriptors and is role based.

Interoperability
JB

JavaBeans can interact with components
built using other models, which includes the
widely used Component Object Model (COM).
Using the Beans-ActiveX Bridge, a bean can be
converted to an ActiveX control. A converted
ActiveX control can interoperate with other
ActiveX controls in an ActiveX container.

EJB
While the EJB spec allows the EJB server

vendors to use any communication protocol
between the client and server, the EJB/CORBA
mapping document is prescriptive with
respect to what goes on the wire. This allows
both system-level and application-level inter-
operability between products from vendors
who choose to implement the EJB/CORBA
protocol as the underlying communication
protocol.

Java clients will optionally communicate
with server components using IIOP. They’ll
have a choice of APIs – either the Java RMI or
the Java mapping of the CORBA IDL interface.
Non-Java clients communicate with server
components using IIOP and the appropriate
language mapping. Clients wishing to use the
COM+ protocol communicate with the server
component through a COM-CORBA bridge.
Also realize that the client of an EJB can itself
be a server component (for instance, Java Serv-
er Pages or a servlet), so an HTTP-only Web
client can use a servlet to make EJB invoca-
tions.

An EJB can’t be deployed as an ActiveX con-
trol because those controls are intended to run
at the desktop and EJBs are server-side compo-
nents. CORBA-IIOP compatibility via the EJB-
to-CORBA mapping is defined by the OMG.
However, EJB components may be able to
communicate with DCOM servers using a
DCOM-CORBA bridge.

Summary
Table 3 summarizes the characteristics of

JavaBeans and Enterprise JavaBeans.

28 AUGUST 1999

Table 1: Comparison of Simple and Participant beans

Characteristics Simple Bean Participant Bean
Nesting Not aware of its container, so nesting Aware of its container. Nesting structure is exposed through

structure isn’t exposed. BeanContext APIs.

Types Not typed BeanContext, BeanContextChild, BeanContextService

Access to arbitrary services No Yes

InfoBus Aware No Yes

Characteristics Session Entity

Client access Single Multiple

Identity Not unique Unique defined by
entity’s primary key

Survives container No Yes
crash?

Transaction-aware May or may not Yes

Database Access May or may not Yes

Lifetime Limited to that of the Alive as long as data
client exists in the domain model

Table 2: Comparison of Session and Entity beans

29AUGUST 1999

Sybase
www.sybase.com

Conclusion
JavaBeans technology, now in its third year,

has undergone the acid test of the industry. The
original spec has gone through a couple of iter-
ations since its introduction. Although the spec
may undergo further iterations, many aspects
of JavaBeans have been firmed up.

On the other hand, the EJB spec is just more
than a year old and still evolving. Now at ver-
sion 1.1, it provides an excellent architectural
foundation for building distributed enterprise-
level business object systems. Some areas in
the spec need to be examined closely, however
– most notably in the EJB model for handling
persistent objects. Standardizing the contract
between development tools and systems to
provide a uniform debugging interface for all
development environments is being consid-
ered as well. The specification will still go
though more iterations before becoming final.

The other issue is compatibility. There are
two areas where compatibility is an issue. One
is what actually constitutes an “EJB-compati-
ble” server. The other is guaranteeing that EJBs
developed on servers from different vendors
can interoperate.

References
1. Cable, L. (1997). Glasgow Specification Ver-

sion 99A. Sun Microsystems, July.

2. Enterprise JavaBeans Specification 1.1. Sun
Microsystems, June 1999.

3. Hamilton, G., ed. (1997). JavaBeans Specifi-
cation, Version 1.02. Sun Microsystems,
July.

4. Rodrigues, L. (1997). “Java, The Next Gener-
ation: JavaBeans.” Java Developer’s Journal,
Vol. 2, issue 1, January.

5. —(1998). The Awesome Power of JavaBeans.
Manning.

6. Seshadri, G., and Raj, G.S. (1999). Enterprise
Java Computing – Applications and Archi-
tecture. SIGS/Cambridge University Press.

AUTHOR BIOS
Lawrence Rodrigues, author of The Awesome Power of Java Beans,
has more than 15 years of industry experience.You can reach him
through his “Bean man’s home page” at www.execpc.com/~larryhr or
by e-mail at larryhr@execpc.com.

Gopalan Suresh Raj, a senior analyst at Compuware Corporation, is a
contributing author to Enterprise Java Computing – Applications and
Architecture and The Awesome Power of JavaBeans. His expertise
spans enterprise component architectures and distributed object com-
puting. He can be reached at www.execpc.com/~gopalan or by e-mail
at gopalan@execpc.com.

30 AUGUST 1999

Characteristics JavaBeans Enterprise JavaBeans
Purpose General purpose Enterprise computing

Description A reusable software component capable of being A reusable server-side component.
manipulated in visual builder tools.

Structure and Represented by a single class, but functionality can be spread A remote object described by a Home interface and a Home object, a
Behavior over multiple classes through inheritance and delegation. Remote interface and an EJB object, an enterprise bean implementation

Bean class should have no-arg constructor. and its deployment descriptors. Primary keys are used to identify Entity
Can be a local or remote object. beans.

Visibility Visible, invisible or both Invisible

Types No types in JavaBeans 1.0 Session and Entity beans
Glasgow has Simple and Participant beans.

Persistence A bean class has to be Serializable or Externalizable Session beans can be activated and passivated. Persistence in Entity
beans is of two types: bean managed and container managed.

Customization A bean is customized by setting its properties. An EJB is customized by setting deployment descriptors

Containment Simple beans aren’t aware of the container whereas EJBs run within an EJB container and have complete knowledge of the
Participant beans are. environment.
Participant beans can be nested and can request arbitrary EJBs can’t be nested.
services from the container. EJBs can request arbitrary services from their containers.

Application Can be assembled manually or visually. No tools currently support this, but vendors may come out with tools
Assembly that do very soon.

Packaging Packaged in JAR file. Also packaged in JAR file.
Bean class attribute: Java-Bean Bean class attribute: enterprise-javabean

Security No special security. Follows the Java security model. Security is declaratively defined in the deployment descriptors and is
role based

Transaction Support No explicit support May be transaction enabled – six modes TX_NOT_SUPPORTED,
TX_BEAN_MANAGED, TX_REQUIRED, TX_SUPPORTS,
TX_REQUIRES_NEW, TX_MANDATORY

Interoperability Bean can be converted to an ActiveX control through the CORBA-IIOP compatibility via the EJB to CORBA mapping defined by the
ActiveX bridge and can in turn communicate with other OMG. COM interoperability through COM-CORBA bridges.
ActiveX controls.

APIs java.Beans and java.Beans.BeanContext javax.ejb

TABLE 3: Summary of differences between JavaBeans and Enterprise JavaBeans

larryhr@execpc.com gopalan@execpc.com

Subscribe Today
and receive the

“CFDJ Digital Edition”
FREE

Subscribe Today
and receive the

“PBDJ Digital Edition”
FREE

at www.POWERBUILDERJOURNAL.com

1800-513-7111
or subscribe online for faster service
subscribe@sys-con.comG

E
T

Y
O

U
R

 O
W

N
!

Subscribe Today
and receive the

“CFDJ Digital Edition”
FREE

Subscribe Today
and receive the

“JBDJ Digital Edition”
FREE
at www.JBUILDERJOURNAL.com

1800-513-7111
or subscribe online for faster service
subscribe@sys-con.comG

E
T

Y
O

U
R

 O
W

N
!

31AUGUST 1999

Tidestone
www.tidestone.com

Bean-managed and container-managed persistence: advantages and disadvantages

WRITTEN BY
JASON WESTRA

Enterprise JavaBeans Persistence

32 AUGUST 1999

Enterprise JavaBeans Persistence:
Two Persistence Models

“Would you like the window or the
aisle, sir?” asks the Intergalactic Travel
ticket agent. Decisions, decisions! Does
it matter? Well, maybe. That depends on
a number of factors. Hmmm….Are you
flying into the magnificent city of Corus-
cant or bound for barren Tatooine? Is
the seat adjacent to the window seat
occupied by Darth Maul?

Life is all about options, and the
development of business applications is
no different. Fewer options amount to
less flexibility; however, limiting your
choices certainly simplifies the decision
process. On the other hand, more
options means more flexibility for your
application, albeit at the cost of lengthy
debate over which choice is best for you.
This month’s topic discusses the choices
available when you implement persis-
tence with entity beans in your Enter-
prise JavaBeans application.

Entity Bean State Management
The Enterprise JavaBeans 1.0 (and

newly released 1.1) specification attempts
to simplify decisions about persistence
by providing a straightforward persis-
tence model for managing the state of
entity beans (note that entity bean sup-
port is not mandatory in 1.0 of the EJB
specification, but is mandatory for EJB
1.1 compliance). State management
refers to the creation, destruction, load-
ing and storage of persistent data in an
entity bean. The EJB specification defines
a small set of methods to perform these
important services: ejbCreate, ejbLoad,
ejbStore, ejbRemove, ejbActivate and ejb-
Passivate. We’re particularly interested in
the first four, which represent the CRUD
(Create, Read, Update and Delete) opera-
tions typically seen in a persistent appli-
cation. Over the course of this article
you’ll become intimate with these meth-
ods and their state management respon-

sibilities through the Intergalactic Travel
ticket system examples.

Besides describing the methods for
managing an entity bean’s state, the EJB
specification offers two models of per-
sistence: bean managed and container
managed. However, as we’ve noted,
multiple options can lead to confusion
and extra decisions you have to make to
meet your project’s deadline…which
was yesterday. Each model has its
advantages and disadvantages, of
course. This article highlights the
semantics and trade-offs of the two EJB
persistence models, providing you with
ammunition to decide quickly and easi-
ly which one best suits your needs.

The Intergalactic Travel ticket system
provides a good illustration of the two
persistence models. For our purposes, a
simple entity bean that represents a per-
sistent luxury liner ticket will suffice.
Figure 1 reveals the UML class diagram
of the TicketEntityBean; Table 1 depicts
the RDBMS storage schema for this enti-
ty bean. This month’s example enter-
prise beans were written to the EJB 1.0
spec and deployed using a BEA WebLog-
ic Application Server 3.1.4.

Bean-Managed Persistence
Bean-managed persistence refers to

situations in which an entity bean man-
ages its own state through the implemen-
tation of persistence methods via JDBC,
object serialization, etc. To code an entity
bean with bean-managed persistence,
you must implement the relevant opera-
tions to create, store and load your entity
bean from its persistent storage format.
Let’s take a look at an example entity
bean from the Intergalactic Travel ticket
system that implements bean-managed
persistence. The jdj.Ticketing.beanman-
aged.Ticket-EntityBean (TicketEntity-
Bean for short) contains JDBC SQL calls
to handle storage and retrieval of the
bean from our MS Access RDBMS.

Intergalactic Travel ticket agents issue
new tickets as passengers reserve seats
and pay in credits for the flight. The life
cycle of our TicketEntityBean begins
when we invoke a create method
through our factory interface class, Tick-
etEntityHome. An entity bean’s home
interface can provide multiple “create”
methods, each having a corresponding
ejbCreate() method on its entity bean.
This method is called from the home
interface class via its container, and
allows you to initialize your entity bean
accordingly. In our example we have just
one create method, which takes all
attributes necessary to create a fully
formed TicketEntityBean. Listing 1
demonstrates how the ejbCreate()
method for our bean-managed Ticket-
EntityBean not only sets the entity
bean’s attributes, but also establishes a
connection to the database, prepares a
JDBC statement and executes an insert
statement into the persistent store. The
TicketEntityBean contains helper meth-
ods to promote reuse of code. They’re
shown in Listing 2.

Next, to access our existing TicketEn-
tityBean, we go through the TicketEnti-
tyHome once again and call the
home.findByPrimaryKey(TicketEnti-
tyPK pk) method. In the case of our
bean-managed persistence entity bean,
this call is forwarded to the ejbFind-
ByPrimaryKey() method of an empty
instance of the TicketEntityBean. Ticket-
EntityBean.ejbFindByPrimaryKey()
reads in the appropriate information
from the ticket table in MS Access and
populates the entity bean. Eventually we
receive a remote reference, TicketEntity,
from the TicketEntityHome. Just as in
the ejbCreate() method, you have to
write all the code necessary to access the
database.

JDBC calls to fetch our entity bean
data are located in a single helper
method, read(). The entity bean may be

E J B H O M E

A
s I sit down to write this article, the hype for Star Wars
Episode 1: The Phantom Menace is even greater than the
Java industry hype before the release of the Enterprise Jav-
aBeans specification 1.0! I couldn’t help including a few ref-
erences of my own to the beloved trilogy in hopes of adding
a little flavor to an otherwise drab topic: persisting data.

33AUGUST 1999

loaded in two ways: ejbFindByPrima-
ryKey() and ejbLoad(). Following good
OO form, the code is written in a single
read() method and called from each
“load” method to achieve localization
and reuse. Listing 3 demonstrates call-
ing read() from our ejbFindByPrimary-
Key() method.

Now that we have our TicketEntity
reference, we can modify it by changing
the arrival city (e.g., from Coruscant to
the Mos Eisley Spaceport on Tatooine)
or the flight number. After an operation
is performed and its transaction com-
mitted, the TicketEntityBean’s contain-
er will issue an ejbStore() to save the
current state of the entity bean to per-
sistent storage. Invoking ejbStore() on
our TicketEntityBean will cause the fol-
lowing actions: get a connection to the
database, prepare an update statement
and execute a SQL Update through
JDBC to the ticket table. Again, you have
to code all of the relevant logic by hand
for SQL database access, connection
management and exception handling.
Listing 4 demonstrates a bean-man-
aged update.

What if a ticket is invalid and an Inter-
galactic Travel ticket agent wishes to
delete the bad ticket from the database?
In EJB you have the flexibility to remove
an entity bean in two different ways:
indirectly, through the entity bean’s
Home Interface.remove(myPrimaryKey
pk) method, or directly, through the
entity Bean.remove() method. Either
way, the correct entity bean is located by
the container and the ejbRemove()
method is called. In the case of a bean-
managed entity bean, you must code
the JDBC calls to effectively delete the
row from the ticket table. This code is
illustrated in Listing 5.

Finally, to allow a ticket agent to see a
list of valid tickets issued for a particular
space flight, we need to provide a mech-
anism to query our persistent store of
tickets and return this list. To do so will
require a search method against the
ticket table by flight number.

In EJB, finder methods on entity
beans provide the means to return an
enumeration of valid results. Finder
methods are located on the home inter-
face of the appropriate entity bean; thus,
to search for all tickets issued for a spe-
cific flight, we have created a method,
findTicketsByFlight(int aFlightNumber),
on TicketEntityHome, our bean-man-
aged entity’s home interface. As usual,
the home interface class finder method
delegates to an entity bean instance to
do the dirty work. The code necessary to
return this list is executed in the Ticket-
EntityBean.ejbFindTicketsByFlight()
method (see Listing 6). Within ejbFind-

TicketsByFlight() a JDBC ResultSet is
returned from a query, and primary keys
for each ResultSet row are instantiated
and returned. The home interface class
uses this list of primary keys to fetch to
the appropriate entity bean instances
and return an enumeration of TicketEn-
tity proxies to the caller.

Bean-managed persistence has
numerous admirable qualities including
development flexibility and the ability to
allow developers to write database
access code tailored for performance.
For instance, complex searches can be
coded into entity bean ejbFinder meth-
ods, and entity beans representing data
from multiple sources can be coded eas-
ily through bean-managed persistence
(if your EJB server provider doesn’t sup-
port mapping multiple tables to a single
container-managed entity bean). In
addition, developers can access their
JDBC ResultSet directly, and tune this
code for high performance as needed.

However, it clearly takes considerable
work to create a bean-managed entity
bean. Besides being tedious to design
and implement, managing persistence
inside your own beans exposes you to
coding errors and limits portability and
reusability.

With bean-managed persistence you
must code all database access yourself.
This can lead to error-prone code and a
retesting nightmare when your entity
bean’s attributes change. You must
remember to handle database excep-
tions correctly and always close
resources that might be left hanging
from an error.

You must also make your own con-
nection to the database, which may
involve creating a new connection each
time if your EJB server doesn’t provide a
mechanism to return existing connec-
tions from a pool. Creating a new con-
nection for each database call is costly
and ill advised in a high-volume envi-
ronment.

The topic of ensuring EJB portability
would take a whole article or two in itself
(in an upcoming issue); essentially, man-
aging your own connections reduces

bean portability. Do you see any hard-
coded references to WebLogic in our
example? What if we decide to port our
entity bean to another EJB server? All ref-
erences to WebLogic would have to be
found and replaced.

Finally, what if you wish to port your
bean to another storage mechanism? If
you’d like to reuse the bean-managed
TicketEntityBean in a file-storage schema,
you’re in for some heavy code modifica-
tions!

To solve these problems, EJB provides
container-managed persistence.

Container-Managed Persistence
Container-managed persistence relies

on the EJB server to generate the appro-
priate code to manipulate your entity
bean. Specifically, the entity bean’s per-
sistence services are handled by its con-
tainer, which transparently manages
the bean’s persistent state. No data stor-
age coding is demanded from develop-
ers of container-managed entity beans.
Developers simply write business logic
within the entity bean and leave the
responsibility for mapping a storage
schema in the entity bean’s deployment
descriptor up to the bean’s deployer. It’s
important to note that the EJB 1.0/1.1
specification doesn’t lay the ground-
work for how container-managed per-
sistence is to be implemented; thus
each EJB server typically provides
unique implementations of these ser-
vices through proprietary containers.
While one may store entity beans only
as serialized objects, another may offer
a whole gamut of options ranging from
file-based persistence to storage in an
RDBMS or an ODBMS.

So how does a container-managed
entity bean differ from our bean-man-
aged entity bean? To understand the dif-
ferences we’ll look at the entity bean class:
jdj.Ticketing.containermanaged.Ticket-
EntityBean as well as jdj.Ticketing.con-
tainermanaged.file.TicketEntityBean
(TicketEntityBean, for short). These class-
es represent the same bean-managed
TicketEntityBean just discussed, but dele-
gate persistence to their containers
instead.

Container-Managed TicketEntityBean
A glance at TicketEntityBean.ejbCre-

ate() in Listing 7 reveals the first of many
dramatic differences in the bean-man-
aged implementation versus the con-
tainer-managed implementation of our
TicketEntityBean. Initialization of its
attributes with the values passed is the
extent of the logic performed by the con-
tainer-managed entity bean. After the
execution of ejbCreate(), the entity
bean’s container will act on behalf of it,

FIGURE1: UML class diagram of TicketEntityBean

TicketEntityBean
(from Ticketing System)

ticketNum : int
price : double
flightNumber : int
seatNumber : String
departDt : Date
arrivalDt : Date
departCity : String
arrivalCity : String
passengerNumber : int

performing an insert into the appropri-
ate storage device (in our case a file or an
MS Access DB). No coding of complex
JDBC calls, connection management or
exception handling was required to save
our container-managed entity.

Similarly, we see that the JDBC code
from our bean-managed entity bean has
been removed from the following meth-
ods: ejbLoad(), ejbStore() and ejbRe-
move(). In each case the container exe-
cutes the appropriate code for the
retrieval, storage and removal of our
TicketEntityBean.

Finally, the helper methods used in
the bean-managed example are unnec-
essary in this case. We no longer need
the custom read(), getConnection(),
close(), static initializer of our database
driver class or the ejbFinder method
ejbFindTicketsByFlight(). Functionality
previously offered in these methods is
handled transparently by the container-
managed entity bean’s container!

Component-Based Development Is the Key
You’ll notice no difference between the

JDBC and file-based container-managed
TicketEntityBean classes (including pri-
mary key, home and remote interface
classes [not shown but available for
download at www.JavaDevelopersJour-
nal.com]). In fact, a VDIFF on the entity
bean files will show no change except for
the package name (made for demo pur-
poses only) on all files. Component-based
development tools allow us to change the
bean’s functionality at deployment rather
than during development – and all with-
out a single code change.

Enterprise JavaBean’s container-man-
aged persistence provides tremendous
advantages over bean-managed persis-
tence. Its component-based approach
to writing and deploying persistent
objects reduces development time by
shielding you from writing complex
storage code. This allows you to concen-
trate on business logic within the bean
instead of connection management, file
resource management, data access and
exception handling.

Container-managed persistence also
promotes bean portability by not lock-
ing your entity beans into a particular
storage scheme. Not one line of code
had to be modified to deploy our entity
bean from an RDBMS storage schema to
a file-based schema. Compare that to
what needs to be done to convert our
bean-managed TicketEntityBean. I’ll
leave that exercise to you…and may the
Force be with you!

However, while container-managed
persistence is a powerful option, it does
fall short in some areas. For instance,
some EJB servers may provide robust
mapping of entity beans to multiple
tables while others may only allow a
one-to-one mapping of table-to-entity
bean. In this case you must either write
a bean-managed entity bean or write
multiple container-managed entity
beans and guarantee they always work
within the same transaction.

In addition, complex queries may
not be possible with the finder method
capabilities of today’s EJB deployment
facilities. The EJB specification 1.0 did
not state how to declare container-
managed finder methods; thus each
EJB server vendor has a different
means of deploying your entity bean’s
finder methods. One vendor may pro-
vide functionality that another does
not. The EJB 1.1 standard based on
XML will hopefully provide more har-
monious deployment services between
vendors.

Container-Managed Persistence:Today and Tomorrow
The EJB specification is just that, a

specification. It allows different vendors
to implement the required interfaces as
needed. EJB server vendors have been
providing container implementations to
handle container-managed persistence
to RDBMS and file-based stores.

Today, ODBMS vendors such as Ver-
sant Corporation (www.versant.com)
are assuming the role of EJB Container
Provider by developing containers that
understand how to save entity beans to
their object databases. Currently, third-

party containers such as the VERSANT
Enterprise Container are being built for
specific EJB server vendors such as the
BEA WebLogic Application Server. How-
ever, once the EJB specification provides
guidelines for container implementa-
tions, third-party containers will also be
portable across EJB servers. These con-
tainers will plug into existing EJB
servers, providing value-added func-
tionality to your application out-of-the-
box.

On the deployment side of entity
beans, rumor has it that Symantec’s
(www.symantec.com) VisualCafé prod-
uct will soon include modules that offer
a common deployment interface to
popular EJB servers such as IBM’s Web-
Sphere and BEA WebLogic’s application
servers. Thus you’ll be able to deploy a
bean to either without needing to
understand the nuances of each EJB
server’s entity bean deployer.

Conclusion
We’ve covered the two models of per-

sistence offered in the EJB specification
1.0/1.1 – bean managed and container
managed – and the advantages and dis-
advantages of each. Just as a window
seat may be optimal on one flight and
suboptimal on the next, one model or a
mixture of the two will provide a best fit
for your application’s needs.

Bean-managed persistence offers you
the ability to perform complex queries
or map entity beans to multiple data
sources, yet it lacks portability, reusabil-
ity and simplicity, requiring knowledge
of complex storage mechanisms and
connection management. Container-
managed persistence has its faults as
well, such as a lack of entity bean
deployment standards that allows ven-
dors to offer various degrees of func-
tionality in their products. However, the
component-based features of contain-
er-managed persistence promote entity
bean portability and reuse while simpli-
fying the development of persistent
objects, allowing you to focus on busi-
ness logic. The end result: more robust
applications built in record time at a
fraction of the cost of traditional devel-
opment techniques!

With EJB you have the flexibility to
choose the correct persistent model for
your needs. Recognizing that too many
options can result in one’s downfall, I
hope you have been enlightened suffi-
ciently concerning EJB persistence that
you’ll be able to make the right choice
quickly, and soon be off doing fun stuff
like coding Java…or viewing The Phan-
tom Menace again and again!

AUTHOR BIO
Jason Westra is a

managing partner with
Verge Technologies Group,
Inc., a Java consulting firm
specializing in Enterprise

JavaBeans solutions.

TABLE 1: Access ticket table schema for Intergalactic Travel ticket system

Column Name Data Type
TicketNum Number–Primary Key
Price Currency
FlightNumber Number
SeatNumber Text
DepartDt Date/Time
ArrivalDt Date/Time
DepartCity Text
ArrivalCity Text
PassengerNumber Number

jwestra@uswestmail.net.

34 AUGUST 1999

E J B H O M E

35AUGUST 1999

Object International
www.oi.com

36 AUGUST 1999

// ejbCreate() inserts Entity Bean
public TicketEntityPK ejbCreate

(int aTicketNum, double aPrice,
int aFlightNumber, String aSeatNumber,
Date aDepartDt, Date aArrivalDt,
String aDepartCity, String aArrivalCity,
int aPassengerNumber)

throws CreateException
{

// set attributes into Entity Bean to
// insert

ticketNum = aTicketNum;
price = aPrice;
flightNumber = aFlightNumber;
seatNumber = aSeatNumber;
departDt = aDepartDt;
arrivalDt = aArrivalDt;
departCity = aDepartCity;
arrivalCity = aArrivalCity;
passengerNumber = aPassengerNumber;

// mark as modified
isModified = true;

Connection con = null;
PreparedStatement ps = null;
try{

con = getConnection();
ps = con.prepareStatement(

"insert into Ticket (ticketNum,
price, "+ "flightNumber, seatNumber,
"+ "departDt, arrivalDt, departCity,
"+ "arrivalCity, passengerNumber) "+
"values (?, ?, ?, ?, ?, ?, ?, ?, ?)");

// fill values from TicketEntityBean
// into PreparedStatement

ps.setInt(1, ticketNum);
ps.setDouble(2, price);
ps.setInt(3,flightNumber);
ps.setString(4,seatNumber);
ps.setDate(5, departDt);
ps.setDate(6,arrivalDt);
ps.setString(7,departCity);
ps.setString(8, arrivalCity);
ps.setInt(9,passengerNumber);

if (ps.executeUpdate() != 1)
{
throw new CreateException
("Failed to insert ticket:

"+ticketNum);
}
TicketEntityPK pk =
new TicketEntityPK(ticketNum);

return pk;
}
catch (CreateException ex){

throw ex;
}
catch (SQLException sqlEx) {

throw new CreateException
(sqlEx.getMessage());

}
finally {

close(ps, con);
}

}

// Static initializer in TicketEntityBean
// class
static
{

// initialize weblogic.jdbc.jts.Driver
new weblogic.jdbc.jts.Driver();

}

// Entity Bean helper methods

private void close
(PreparedStatement aPS, Connection aCon)
{

// final attempt to close the
// PreparedStatement and Connection

try {
aPS.close();
aCon.close();

}
catch (Exception ex) {}

}

public Connection getConnection()
throws SQLException

{
// get an open DBconnection from the
// ejbPool

return DriverManager.getConnection
("jdbc:weblogic:jts:ejbPool");

}

public TicketEntityPK ejbFindByPrimaryKey
(TicketEntityPK pk)
throws FinderException, RemoteException

{

// ejbFindByPrimaryKey fetches the Entity
// Bean

if ((pk == null))
throw new FinderException

("Invalid parameter. "+
"Primary Key cannot be null");

System.out.println("ejbFindByPrima
ryKey()");

// call helper method
read(pk);
return pk;

}

private void read(TicketEntityPK pk)
throws RemoteException, FinderException {

// reads data from Ticket table
// into TicketEntityBean

Connection con = null;
PreparedStatement ps = null;
try{

con = getConnection();
ps = con.prepareStatement
("select * from Ticket "+
"where ticketNum = ?");

ps.setInt(1, pk.ticketNum);
ps.executeQuery();
ResultSet rs = ps.getResultSet();

// map data into Entity Bean
if (rs.next()) {

ticketNum = rs.getInt(1);
price = rs.getDouble(2);
flightNumber = rs.getInt(3);
seatNumber = rs.getString(4);
departDt = rs.getDate(5);
arrivalDt = rs.getDate(6);
departCity = rs.getString(7);
arrivalCity = rs.getString(8);
passengerNumber = rs.getInt(9);

isModified = false;
}
else {

throw new FinderException
("Read Error: TicketEntityBean "+

pk.ticketNum + " not found");
}

}
catch (SQLException sqlEx) {

throw new RemoteException
(sqlEx.getMessage());

}
finally {

close(ps, con);
}

}

public void ejbStore()
throws RemoteException

{

// saves Entity Bean to persistent storage
if (!isModified())

return;

Connection con = null;
PreparedStatement ps = null;
try {

con = getConnection();
ps = con.prepareStatement
("update Ticket set ticketNum = ?,"+
"price = ?, flightNumber = ?, "+
"seatNumber = ?, departDt = ?, "+
"arrivalDt = ?, departCity = ?, "+
"arrivalCity = ?, passengerNumber =

?"+ "where ticketNum = ?");

// fill values from TicketEntityBean
// into PreparedStatement

ps.setInt(1, ticketNum);
ps.setDouble(2, price);
ps.setInt(3,flightNumber);
ps.setString(4,seatNumber);
ps.setDate(5, departDt);
ps.setDate(6,arrivalDt);
ps.setString(7,departCity);
ps.setString(8, arrivalCity);
ps.setInt(9,passengerNumber);

// extra for PrimaryKey where clause
ps.setInt(10, ticketNum);

int i = ps.executeUpdate();
if (i == 0) {

throw new RemoteException
("Failed to update TicketEntityBean:

" + ticketNum);
}

isModified = false;
}
catch (RemoteException ex)
{

throw ex;
}
catch (SQLException sqlEx)
{

throw new RemoteException
(sqlEx.getMessage());

}
finally
{

close(ps, con);
}

}

public void ejbRemove()
throws RemoteException
{
// deletes Entity Bean from
// persistent storage

Connection con = null;
PreparedStatement ps = null;
try {

con = getConnection();

TicketEntityPK pk =
(TicketEntityPK) ctx.getPrimaryKey();
ps= con.prepareStatement
("delete from Ticket where ticketNum =
?"); ps.setInt(1, pk.ticketNum);

int i = ps.executeUpdate();
if (i == 0) {

throw new RemoteException
("Delete failed. TicketNumber: "
+ pk.ticketNum + " not found");

}
}
catch (RemoteException ex) {

throw ex;
}
catch (SQLException sqlEx) {

throw new RemoteException
(sqlEx.getMessage());

}
finally {

close(ps, con);

Listing 5: Bean-managed Delete

Listing 4: Bean-managed Update

Listing 3: Bean-managed Read

Listing 2: Helper methods for TicketEntityBean

Listing 1: Bean-managed Create

37AUGUST 1999

}
}

public Enumeration ejbFindTicketsByFlight
(int aFlightNumber)
throws FinderException, RemoteException

{
Connection con = null;
PreparedStatement ps = null;
ResultSet rs = null;
try {

con = getConnection();
ps = con.prepareStatement
("select ticketNum from Ticket "+

"where flightNumber = ?");
ps.setInt(1, aFlightNumber);
ps.executeQuery();
rs = ps.getResultSet();

Vector ret = new Vector();
TicketEntityPK pk;

while (rs.next())
{

pk =
new TicketEntityPK(rs.getInt(1));
ret.addElement(pk);

}

rs.close();
return ret.elements();

}
catch (SQLException sqlEx) {

throw new FinderException
(sqlEx.getMessage());

}
finally {

try {
if (rs != null) rs.close();
if (ps != null) ps.close();
if (con!= null) con.close();

}
catch (Exception done) {}

}
}

package jdj.ticketing.containermanaged;

import java.lang.*;
import java.rmi.*;
import java.sql.Date;
import javax.ejb.*;

/*
* Example of a container-managed Entity
Bean
*/
public class TicketEntityBean extends
Object

implements EntityBean
{
// TicketEntityBean business attributes

public int ticketNum;
public double price;
public int flightNumber;
public String seatNumber;
public Date departDt;
public Date arrivalDt;
public String departCity;
public String arrivalCity;
public int passengerNumber;

// tells whether or not data was
// actually modified

private boolean isModified;

// needed by Entity Bean specification
transient protected EntityContext ctx;

// Business methods for TicketEntityBean
// Getter/Setter methods not shown in
// Listing… Methods to satifsy Entity Bean
// interface

public void ejbCreate
(int aTicketNum, double aPrice,
int aFlightNumber, String aSeatNumber,

Date aDepartDt, Date aArrivalDt,
String aDepartCity, String
aArrivalCity,
int aPassengerNumber)

{
// set attributes to insert

ticketNum = aTicketNum;
price = aPrice;
flightNumber = aFlightNumber;
seatNumber = aSeatNumber;
departDt = aDepartDt;
arrivalDt = aArrivalDt;
departCity = aDepartCity;
arrivalCity = aArrivalCity;
passengerNumber = aPassengerNumber;

// mark as modified
isModified = true;

}

public void ejbPostCreate
(int aTicketNum, double aPrice,
int aFlightNumber, String aSeatNumber,
Date aDepartDt, Date aArrivalDt,
String aDepartCity, String aArrivalCi
ty,int aPassengerNumber)

{
// do nothing

}
public void setEntityContext(EntityCon-

text aCtx)
{

ctx = aCtx;
}

public void unsetEntityContext()
{

ctx = null;
}
public void ejbRemove()
{

// do nothing
}

public void ejbActivate()
{

// do nothing
}

public void ejbPassivate()
{

// do nothing
}

public void ejbLoad()
{

// do nothing
}

public void ejbStore()
{

// do nothing
}

}

package
jdj.ticketing.containermanaged.file;

import java.lang.*;
import java.rmi.*;
import java.sql.Date;
import javax.ejb.*;

/*
* Example of a container-managed Entity
Bean
*/
public class TicketEntityBean extends
Object

implements EntityBean
{
// TicketEntityBean business attributes

public int ticketNum;
public double price;
public int flightNumber;
public String seatNumber;
public Date departDt;
public Date arrivalDt;

public String departCity;
public String arrivalCity;
public int passengerNumber;

// tells whether or not data was
// actually modified

private boolean isModified;

// needed by Entity Bean specification
transient protected EntityContext ctx;

// Business methods for TicketEntityBean
// Getter/Setter methods not shown in
// Listing… Methods to satifsy Entity Bean
// interface

public void ejbCreate
(int aTicketNum, double aPrice,
int aFlightNumber, String aSeatNumber,
Date aDepartDt, Date aArrivalDt,
String aDepartCity, String aArrivalCi
ty, int aPassengerNumber)

{
// set attributes to insert

ticketNum = aTicketNum;
price = aPrice;
flightNumber = aFlightNumber;
seatNumber = aSeatNumber;
departDt = aDepartDt;
arrivalDt = aArrivalDt;
departCity = aDepartCity;
arrivalCity = aArrivalCity;
passengerNumber = aPassengerNumber;

// mark as modified
isModified = true;

}

public void ejbPostCreate
(int aTicketNum, double aPrice,
int aFlightNumber, String aSeatNumber,
Date aDepartDt, Date aArrivalDt,
String aDepartCity, String aArrivalCi-

ty,
int aPassengerNumber)

{
// do nothing

}
public void setEntityContext(EntityCon

text aCtx)
{

ctx = aCtx;
}

public void unsetEntityContext()
{

ctx = null;
}
public void ejbRemove()
{

// do nothing
}

public void ejbActivate()
{

// do nothing
}

public void ejbPassivate()
{

// do nothing
}

public void ejbLoad()
{

// do nothing
}

public void ejbStore()
{

// do nothing
}

}

Listing 8: Container-Managed File TicketEntityBean

Listing 7: Container-managed JDBC TicketEntiyBean

Listing 6: Bean-managed finder: ejbFindTickets
By Flight()

Code listings for this article can also be
located at www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

Originally I planned to continue with the syntax-highlight-
ing CodeDocument component, but I decided to switch gears
and discuss some neat uses for the JTable component that
comes with Swing (my apologies go out to all those weeping in
the aisles, anxiously awaiting more syntax-highlighting
code...oh, just a second, let’s dab the tears away before contin-
uing).

One of the cool features of the JTable component is its abil-
ity to be customized, right down to the individual table cell.
This feature, plus another unspeakably cool feature of Java
itself (called reflection, but more on that later), will allow us to
build a simple Component Inspector similar to what you’d
find in IDEs like Borland’s JBuilder or Symantec’s VisualCafé.

What Is a Component Inspector?
A Component Inspector is used to look at (and edit) the var-

ious properties that make a GUI control, like a text box or a
progress bar. The Inspector is activated by selecting a control,
then editing the properties through the Inspector. This idea is
used not only in Java IDEs, but also in programming tools like
Visual Basic and Borland’s Delphi (see Figures 1 and 2.).

Our Component Inspector will consist of a JFrame, which
will house a table with two columns, and a couple of labels
above the table, to tell us general information about the com-
ponent we’re looking at. What we should end up with can be
seen in Figure 3.

Now, making a super-sophisticated Component Inspector
would be really cool, but the whole point of this article is to
learn more about JTables and reflection, so to test this out we’ll
just have another window that contains a variety of controls,
and each time we click on one of them the Component Inspec-
tor will be updated. Take a look at Figure 4 to see what this
window looks like.

Tables,Tables…and More Tables
Like the rest of Swing, JTable uses the Model View Controller

architecture to allow all sorts of complex customization. One
type allows the programmer to specify exactly how each table
cell is rendered by the table. A table cell – the individual ele-

ment at the inter-
section of a given
row and column –
can be customized
as to how it looks
(how it renders
itself for the user)
and how it’s edited.
Not only can a JTable be
customized at the cell level,
but you can also write a simple
table model class that can prevent columns from being edited.
This is what we want to do since the left-hand column will
only need to display values, not edit them. So let’s just jump in.

The first thing we’re going to look at is the DefaultTable-
Model class, which inherits from the AbstractTableModel. We
could have chosen to subclass the AbstractTableModel, but we
would have had to implement everything ourselves. Since the
only piece of functionality we want to add at this point is to
lock the leftmost column against being edited, it’s much sim-
pler to extend an already functional class – namely, Default-
TableModel. To prevent column 0 from being edited, we over-
ride the functionality of the method isCellEditable(), which is
called whenever the Table Model receives notification that a
cell needs to edited. If the function returns true, editing is
allowed; if false, then editing is prevented. By returning false at
the appropriate times, we can easily prevent column 0 from
being edited. Take a look at the code in Listing 1.

The first thing we do is to add all the constructors of the
DefaultTableModel so they can be called from our class. Next,
we override the isCellEditable() method. In this method we
check for what column is being requested. If it’s 0, we auto-
matically return false; otherwise we call the super class’s
isCellEditable method to handle any remaining cases.

Now let’s play around a bit and learn how to customize the
Table rendering. As I mentioned before, each cell that gets ren-
dered can be customized with its own renderer, which is asso-
ciated with the class type of the value in the cell. Let’s say you
had a cell at column 0 and row 0 that was a String object. You
could associate a custom cell renderer with any String object,
and the table would automatically use your renderer to paint
the cell instead of its own. Not only would it paint the cell at
column 0, row 0, using your renderer, but any other values in
the table that were String objects would also get painted using
the same renderer. Any object can be a renderer so long as it
implements the TableCellRenderer interface (in the
com.sun.java.swing.table package). The TableCellRenderer
interface has only one method, getTableCellRendererCompo-
nent(), which needs to return a Component object. The argu-
ments of the method can tell you whether the cell is selected
or not, whether it has focus, what the value of the cell is, the
column and row of the cell, and the actual table component
the cell belongs to. A very simple implementation could be the
one in Listing 2.

To use this, look at Listing 3.
A cell renderer can also be a component itself. For example,

let’s say that for boolean objects we want a checkbox to appear
(there already is a cell renderer available for boolean values
built into the JTable implementation, courtesy of the nice folks
at Sun). We could just create a new sub class of JCheckBox and

Reflecting a Bean onto a Table
Advanced JTable customization and object reflection with Java

WRITTEN BY
JIM CRAFTON

38 AUGUST 1999

FIGURE 1: Object Inspector from Delphi FIGURE 2: Component Inspector from JBuilder

39AUGUST 1999

Insignia
www.insignia.com

40 AUGUST 1999

implement the TableCellRenderer inter-
face and we’d be all set to go. Let’s look at
the example in Listing 4.

One thing to remember is that the
value argument of getTableCellRender-
erComponent() can be null, but you still
have to return a component of some
sort or the table will throw a sea of
exceptions when it tries to draw itself,
especially if you scroll down through a
number of rows.

Now that we can customize our dis-
play of call data, if we were going to
allow editing, we’d want to create a cell
editor now as well. In this example, how-
ever, we’re just going to try and display
information only.

Mirror, Mirror on the Wall...
Okay, so we know how to display our

data, but where do we get it from and
how do we get at it? This is accom-
plished using a very cool – and very
powerful – feature of Java called reflec-
tion (also sometimes referred to as class
or JavaBean introspection). What you
read here will be used not only in this
article, but again when we come back to
our CodeDocument class and start
adding features like dropping down a
listbox full of the variable’s methods and
attributes just typed in.

Reflection allows the programmer to
ask an object to describe itself by listing
all of its methods, fields and method sig-
natures. It is literally like walking up to a
person and asking them to describe
themselves for you, tell you their family
history (who their parents were, where
they were born, etc.), list all the things
they can do and so on. Like reflection,
JavaBeans introspection allows you to
ask for all sorts of detailed information
pertaining to the specific instance of a
bean at runtime, which is what allows
tools like JBuilder and VisualCafé to list
all the properties of a particular bean.

Reflection starts by obtaining a refer-
ence to the object’s Class attribute. This is
accomplished by the getClass() method
in the Object base class. Once you have a
Class object, you can get the rest of the
information you need – and can even call
the methods you retrieve! Let’s look at
Listing 5 for an example.

The first thing we do in the code is to
get the Class object from the argument
aValue. Now remember, because we’ve
defined the aValue argument as an
object, it could represent anything at
runtime – a JFrame, a Hashtable or any-
thing else. Once we have a reference to
the class object, we can get the class
name through the getName() method,
which returns a fully qualified name
(i.e., instead of “String”, it returns
“java.lang.String”). Any of the construc-

tors, methods or fields of the class can
be retrieved through calls like getDe-
claredMethod() (for a single method) or
getDeclaredMethods() (for all of the
methods) (for constructors, you would
use getDeclaredConstructors(), and so
on). Using the getDeclaredMethods()
method, we can loop through all the
methods and print out their names
using the Method class’s getName()
function. When retrieving a single
method, you have to pass in the method
name as well as an array of class objects
that represent the arguments of the
method. So let’s say we were going to try
and find out if the object had a setEle-
mentAt() method. We could do this as
shown in Listing 6.

The array of class objects tells Java
what types are in the argument list. If
there are no arguments, you can just
pass in null. Invoking the method is sim-
ilar to retrieving it. You pass in an array
of objects that are the actual values you
want passed as arguments to the
method. That would be as in Listing 7.

Presto! You have magically invoked a
method, determining everything at run-
time!

Getting BeanInfo
As I mentioned earlier, if the object

you’re dealing with is a JavaBean, you
can get even more information – things
like what kind of property editors it uses,
what the display name is, whether a par-
ticular property of the JavaBean knows
how to paint itself, and many others.

To start, you use the Introspector sta-
tic class method getBeanInfo(), passing
in the Class object of the bean or com-
ponent you’re interested in. The Intro-
spector is nice enough to package every-
thing in a neat interface called BeanInfo
that has a number of methods to
retrieve things like the icon associated
with the bean, as well as all the proper-
ties, events and methods for that bean.
The item we’re really interested in is the
list of properties, retrieved through a call
to the getPropertyDescriptors() method
of the BeanInfo class. This method gives
us an array of PropertyDescriptors from
which we can get information like the
“read” and the “write” methods of the
property, the property editor class (if
one exists) and other information as
well. Another short example of using
this is the code in Listing 8.

All this code does is output the avail-
able properties with their names, and
read and write method names to the
command line. If you were interested in
finding out what was in any of the prop-
erties, you could use the getRead-
Method() function and invoke the read
method as described earlier.

Tune in next time...
That’s it for this month. We’ll wrap it

up in the next article by combining the
two features we discussed: the cus-
tomization of tables with reflection and
JavaBean introspection, and we’ll have
ourselves a bona fide Component
Inspector. In doing this, we’ll delve fur-
ther into the PropertyInspector class,
learning how to paint the property and
how to display any custom editors that
exist for the property. Hope you found
this as fascinating as I did writing it! See
you next time....

ABOUT BIO
Jim Crafton is a staff consultant with Computer Sciences
Corporation where he specializes in object-oriented
development. He also develops advanced graphics software
for Windows and the BeOS. Jim has a Web site at
www.one.net/~ddiego/.

FIGURE 4: Updated Component Inspector

FIGURE 3: JFrame

ddiego@one.net

41AUGUST 1999

Oracle
www.oracle.com

42 AUGUST 1999

import com.sun.java.swing.*;
import com.sun.java.swing.table.*;
import java.util.*;

public class ComponentInspectorTableModel extends Default-
TableModel{

public ComponentInspectorTableModel(){
super();
}

public ComponentInspectorTableModel(int numColumns,
int numRows){

super(numColumns, numRows);
}

public ComponentInspectorTableModel(Object[] columns,
int numRows){

super(columns, numRows);
}

public ComponentInspectorTableModel(Object[][] columns,
Object[] rows){

super(columns, rows);
}

public ComponentInspectorTableModel(Vector columns,
int numRows){

super(columns, numRows);
}

public ComponentInspectorTableModel(Vector columns,
Vector rows){

super(columns, rows);
}

public boolean isCellEditable(int row, int column){
if (column ==0){

return false;
}
else{

return super.isCellEditable(row, column);
}

}

}

public class SimpleValueRenderer implements
TableCellRenderer{

Jpanel cell = new Jpanel();
Jlabel label = new Jlabel();

public SimpleValueRenderer (){
cell.setBackground(Color.darkGray);
cell.add(label);

}

public Component getTableCellRendererComponent(JTable
table, Object value,

boolean isSelected,
boolean hasFocus,
int row, int col){

label.setText(value.toString());
return cell;

}
}

JTable aTable = new JTable
..
..

//previous initialization code...
aTable.setDefaultCellRenderer(String.class,new
SimpleValueRenderer());

public class BooleanValueRenderer extends JCheckBox
implements TableCellRenderer{

public BooleanValueRenderer (){
super();

}

public Component getTableCellRendererComponent(JTable table,
Object value,

boolean isSelected,
boolean hasFocus,
int row, int col){

this.SetValue((Boolean)value);
return this;

}
}

and to use it...

..

..

//previous initialization code...
aTable.setDefaultCellRenderer(Boolean.class,new
BooleanValueRenderer ());

public void getClassInfo(Object aValue){

Class valueClass = aValue.getClass();

//lets write out the name of the class to command line
System.out.println(valueClass.getName());

//lets get all the methods and then print out their names
//to command line

Method[] classMethods = valueClass.getDeclaredMethods();

for (int i=0; i < classMethods.length;i++){
Method aMethod = classMethods[i];

//print out the name
System.out.println(aMethod.getName());

}

}

Class[] args = new Class[2];
args[0] = Object.class;
args[1] = Integer.TYPE;
//you have to do this because the method takes an int
//not an Integer
try{

Method setElementAtMeth =
valueClass.getDelaredMethod("setElementAt", args);
}
catch (Exception ex){

ex.printStackTrace();
}

Object[] vals = new Object[2];
vals [0] = new String("Hello there");
vals [1] = new Integer(0);
//Java will correctly convert this to an int

try{
setElementAtMeth.invoke(aValue, vals);

//method gets invoked !
}
catch (Exception ex){

ex.printStackTrace();
}

public void inspectAButton(Jbutton aBtn){
try{
BeanInfo beanInfo = Introspector.getBeanInfo(aBtn);
PropertyDescriptor[] props = beanInfo.getPropertyDescrip
tors();
if (props != null){

for (int i=0; i < props.length; i++){
PropertyDescriptor pd = props[i];
System.out.println("Property " + pd.getDisplayName()
+ " has read method: " + pd.getReadMethod().get
Name() + " and write method: " +
pd.getWriteMethod().getName());

}
}

}
catch(Exception ex){

ex.printStackTrace();
}

}

Listing 8

Listing 7

Listing 6

Listing 5

Listing 4

Listing 3

Listing 2

Listing 1

The code listing for all articles can also be located at
www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

43AUGUST 1999

Force 5
www.force5.com

44 AUGUST 1999

KL G
www.klgr

roup
roup.com

45AUGUST 1999

W
here were you in mid-June 1999, between
the 15th and the 18th? I know where at
least 20,000 of you were: Moscone Center,

San Francisco.
San Francisco was host to this year’s

JavaOne conference – the ultimate show for
anyone involved in the Java universe. If you
didn’t manage to make it out to the West
Coast, lend me your eyes for a wee while and
I’ll take you through some of the things you
missed. If you did manage to go, let me hope-
fully jog some happy memories as I take you
behind the scenes.

Most people’s JavaOne experience begins
with the queue for their regulation JavaOne
backpack – which this year was a much more
functional beast than the black bag we got last
year. So, with our newfound friend for the week
strapped securely to our shoulder, we descend-
ed into the belly of the Moscone Center.

Last year, the hall to the left of the escalators
was the main exhibitor hall, which shared its
real estate with the café. This year the hall was
allocated entirely to café space, which gave a
hint that this year’s JavaOne was going to
eclipse the previous one.

As I wandered about the empty halls of
Moscone, I was thinking about how, in a mat-
ter of a couple of hours, these halls would be
filled with thousands of people involved with
Java at all levels.

Some of the Highlights
Historically, there are only two real keynotes

you simply have to attend: the opening
keynote and the one Scott McNealy delivers.
This isn’t to say that the rest of them are boring
or uninteresting, just optional.

John Gage opened the first keynote with an
array of rather impressive statistics. For exam-
ple, this year’s JavaOne played host to over 800
speakers to inform and entertain what was
expected to be over 20,000 people. This atten-
dance figure was indeed reached. When you
compare this to the first-ever JavaOne of just a
few years ago, when there were just 6,000
attendees, the growth rate is astonishing.

John Gage did his usual show introduction
and let us in on some of the exciting things
that would be coming our way over the week.
Last year, the whole conference went fractal
mad, as we all clambered to get our Java ring
into the picture. This year we had a new toy:
the PalmPilot V, one of the first handheld
devices to carry the Java Virtual Machine. It
allowed us to beam class files to one another,
which made for a rather interesting game that
John Gage set up to ensure that everyone at
the conference interacted with everyone else.

Sun wasn’t as generous as they had been
with the Java rings, however: we had to actual-
ly buy the PalmPilot as it wasn’t part of our
wonderful backpack. That said, 3Com sold
them at a highly reduced price, which made it
extremely cost effective. I didn’t succumb to
this opportunity as my view of these devices is
that they’re purely a novelty. One wonders
how many of them will still be in use after a
month. Maybe I’m cynical, but hey, that’s what
I’m here for.

One of the other handhelds shown at
JavaOne was the Motorola pager, which also
housed the JVM. It was said that the pager was
also considered to be the gimmick of the show,
but the FCC wasn’t happy to have 20,000 radio
beacons in one very concentrated area. Either
way, the ability to beam Java classes – for
example, a game – between these differing
platforms served only to reinforce the cross-
platform features of Java. It was indeed a won-
derful demonstration. It’s one thing to have
the same class run in both an Apple environ-
ment and a Windows environment, but to see
it work with devices that are so different, such
as the PalmPilot and a pager, is indeed a sight
to behold.

Alan Baratz was up next, and after we were
introduced to his daughter in a Linux-Java
jive, he went on to announce a number of new
developments that will affect us all.

As we know, Java is growing at a tremen-
dous pace. The speed at which APIs are being
added makes even the most competent of Java
developers worry about being left behind. But
fear not. This explosion of class files has now
been given a structure, and it was this new
grouping that Alan Baratz introduced us to.

Java is now grouped into three editions:
Enterprise, Standard and Micro. This is how
Java 2.0 will now be referred to. You can learn
more about the new editions from the main
Java Web site, but don’t worry – no new APIs
have been added, just logically grouped.

Wherever you went, there was no denying it
was a Sun conference. Apart from the Sun logo
everywhere, the army of black T-shirts that
wove in and out of the delegates – rushing
back and forth between the main exhibit hall
and the birds-of-a-feather sessions – were a
testament to the fact that Sun had lost most of
its workforce for those four days.

Speaking of BOFs, this year’s offering
explored every single aspect of the Java world.
No matter what area of Java you were interest-
ed in, a BOF existed that allowed you to get
closer to the engineers driving many of the
APIs. This was good on a number of levels, as
many of the attendees contribute to the vari-

ous API mailing lists, and it was a great oppor-
tunity to be putting faces to the names that
regularly invade inboxes. One complaint was
that many of the sessions overflowed with
people. This is a good sign in a way, as it high-
lights the popularity of these types of sessions.
It will be interesting to see how Sun addresses
this demand for knowledge next year.

Down in the main exhibitor hall an explo-
sion of companies displayed their wares. If
you remember, last year Sun took center stage,
with all other companies on the periphery.
The main problem with this was that the
majority of delegates went to the Sun stand
only and never ventured elsewhere. This year,
Sun pulled a rabbit out of the hat by placing
itself all around the outside edges and having
the center filled with all third-party compa-
nies. This circulating technique worked won-
derfully well, with many of the exhibitors I
spoke to pleased with the amount of traffic
flowing past.

As usual, Sun had a booth for each major
API, manned by the actual chaps behind said
API. This proved to be successful as it gave del-
egates the opportunity to quickly hone in on
the particular area they wanted information
on. I think this is a wonderful way to bring the
backroom developer out into the fresh air
once in a while. I’ve never been to a Microsoft
conference, so I have no idea if Microsoft is
brave enough to wheel out the poor team
working on NT or 98.

We had our radio booth up in the media
hall, and over the course of the four days we
conducted well over 40 radio interviews. We
had all the big names from Sun, including
James Gosling, George Paolini and Bill Roth.
In addition to this, a number of companies
took the show opportunity to announce key
press releases. We had them all. So drop by the
main JDJ Web site to catch up on the latest
press, and listen to our own Chad “voice of
CNN” Sitler. What a voice that man has!

JavaOne 1999 was indeed a fantastic confer-
ence – probably the best I’ve ever attended,
and I’m including non-Java ones in this state-
ment. It had everything a Java developer could
have wished for. Of course, there were things
that could have been done better; there
always are. But on the whole, I know I got a lot
out of it, as did many of you that spoke to me
about the whole show.

JavaOne 2000 will be held in the Moscone
Center between June 5 and 8. This scares me.
If the growth rate continues, then we’ll simply
have to ask the residents of San Francisco to
move out for four days, and leave the lights on.

Until then, back to development I go.

WRITTEN BY ALAN WILLIAMSON

JDJ’s Exclusive JavaOne Coverage

46 AUGUST 1999

47AUGUST 1999

Elixir
www.elixir.com.sg

48 AUGUST 1999

JDJ 100% Pure Java

49AUGUST 1999

SL Corp
www.sl.com

50 AUGUST 1999

The Objec
www.object

51AUGUST 1999

ct People
tpeople.com

Java Developer’s Journal Readers’ Choice Awards,
the “Oscars of the Software Industry ,” Recognized 14 Winners

and

52 AUGUST 1999

Java Developer’s Journal, the world’s lead-
ing publication targeting Java professionals,
recognized the best software products pro-
viding business solutions with Java. JDJ pre-
sented its Readers’ Choice Awards during a
ceremony held at JavaOne. The awards were
given to the winners and finalists before a
crowd gathered at the SYS-CON Radio booth
where JavaDevelopersJournal.com and SYS-
CON Radio brought this event live to the soft-
ware industry and the readers of JDJ.

More than 15,000 JDJ readers cast their
votes to select the best products of the year.
The polls opened on February 1, 1999, on our
Web site and ran through May 15, 1999. The
votes were tabulated and audited for accura-
cy by BPA International, the largest interna-
tional audit firm specializing in magazine
industry circulation audits. The results of the
poll were received at our offices on June 6,
1999. Winners and finalists in 14 award cate-
gories, and CNN.com, which won the Editor’s
Choice for “Best Online Technology Cover-
age,” were acknowledged for the contribu-
tions they have made in developing Java-
based solutions that respond to and meet the
increasing demands of the industry.

“Products that advance the age of Java tech-
nology are introduced every day,” said Sean
Rhody, JDJ’s editor-in-chief. “The tremen-
dous amount of product nominations we
received created a great challenge for the par-
ticipating vendors of the 1999 Readers’
Choice Awards. After a close review of all the
nominations, the winners and finalists did
not come as a surprise.”

JDJ’s Readers’ Choice Awards, also referred
to as the “Oscars of the software industry,” are
given to the best Java products of the year.
These products are nominated by their ven-
dors, public relations agents, users of the
products, JDJ readers, developers and other
members of the software community.

What’s Unique About these Awards
Awards are given as a result of SYS-CON

Publications’ uniquely implemented voting
procedure, which is openly tabulated and
audited for accuracy by an independent audit
firm. The results of the vote distribution
could closely simulate the market share and
popularity of each product as a result of wide
participation by industry professionals who
are among JDJ readers.

Best Java IDE

Best Application Server

Best Java Class Library

Best Java Middleware

Best JavaBean

Best Java Installation Tool

Best Java Modeling Tool

Best Java Profiling Tool

Best Java Reporting Tool

Best Team Development Tool

Best Java Testing Tool

Best Java Application

Most Innovative Java Prod-

JDJ presented the Readers’
Choice Award winning and

finalist products

53AUGUST 1999

Riverton
www.riverton.com

IBM
Winner: VisualAge for Java
IBM’s VisualAge for Java provides
advanced support for building Web-
enabled enterprise applications, Java-
Beans, Enterprise JavaBeans, servlets
and applets. It’s the only Java develop-
ment environment that supports the
development of Java applications that
can scale from embedded systems to
OS/390 enterprise application servers.

VisualAge for Java is designed to
simplify Java application development
by providing a visual development envi-
ronment that enables programmers to
assemble applications using prebuilt
components such as dynamic, and to
aid abstract development, efficient team
development and the integration of
legacy applications with Web-based
environments.

Inprise
1st Finalist: JBuilder
JBuilder 3 Enterprise is a comprehensive
set of visual development tools for creat-
ing pure Java enterprise-scale applica-
tions for the Java 2 platform. It rapidly
delivers distributed Java 2 applications
using the integrated VisiBroker CORBA
ORB, multitier Application Generator,
BeansExpress for Enterprise JavaBeans,
Java 2 remote debugger and PVCS Team
Development version manager. JBuilder
visually creates IDL interfaces for CORBA
applications using the DataModeler and
provides a graphical view of ORB ser-
vices from within JBuilder using the ORB
Explorer.

Sybase, Inc.
2nd Finalist: PowerJ
PowerJ provides an end-to-end solution
for building Internet applications,
exploiting the benefits of HTML and Java
clients. PowerJ offers database capabili-
ties while integrating seamlessly with

Sybase Enterprise Application Server,
enabling enterprise-class applications
from creation through testing and
debugging to deployment. PowerJ fea-
tures comprehensive support for Java
standards, thin-client deployment includ-
ing an HTML editor, an integrated multi-
language script editor, a repository for
version control, a development version
of Sybase Enterprise Application Server
that allows the user to deploy and
debug components without leaving the
development environment, and Java and
HTML DataWindows.

Apple Computer
Winner: WebObjects
WebObjects, application server software
for developing and deploying high-per-
formance, large-scale Internet and
intranet sites, combines Apple’s strength
in Web-content cre-
ation with performance
productivity and inte-
gration. Running on
UNIX, NT, Mac OS X
and HP-UX, WebOb-
jects provides an envi-
ronment for enterprise
applications to work across system, net-
work and application boundaries. With
WebObjects, developers can build appli-
cations that can be scaled from small
workgroups to millions of users. WebOb-
jects comes with an integrated suite of
development tools and deployment capa-
bilities for building distributed Java appli-
cations.

Sybase, Inc.
1st Finalist: Enterprise

Application Serv-
er
A highly scalable, robust deployment
foundation for Web and distributed
applications, Sybase Enterprise Applica-
tion Server incorporates the capabilities
of a component transaction server and a
dynamic Web page server. EAServer
offers cross-client and cross-component
support for almost any type of distrib-
uted application – those based on
CORBA, JavaBeans, Enterprise Java-
Beans, PowerBuilder and COM compo-

nents, as well as existing C/C++ applica-
tions – and provides a single point of
integration for heterogeneous back-
office systems and extends customers’
businesses to the Web.

IBM
2nd Finalist: WebSphere

Application Server
The IBM WebSphere Application Server
represents a complete range of Web
application server environments support-
ing business applications from simple
Web publishing through enterprise-scale

transaction processing.

Sun Microsystems
Winner: The Java Collec-
tions

Framework
The Java Collec-
tions Frame-
work, a part of
the Java 2 plat-
form, is a uni-
fied architecture
for representing
and manipulat-
ing collections of objects. The Frame-
work allows collections to be manipulat-
ed independently and reduces program-
ming effort while increasing perfor-
mance. It allows for interoperability
among unrelated APIs, reduces effort in
designing and learning new APIs, and
fosters software reuse.

ObjectSpace Inc.
1st Finalist: JGL
ObjectSpace JGL is a Java adaptation of
the ANSI/ISO standard template library
that extends the JDK with a series of 11
advanced collections and more than 50
generic algorithms. JGL includes full
source code, hundreds of examples,
and a comprehensive online HTML tuto-
rial and class reference. JGL also offers
distributed collection support, allowing
the remote construction, access and
persistence of all JGL containers using
ObjectSpace Voyager, the standards-
neutral platform for object computing.

IBM

2nd Finalist: alphaBeans
See Best JavaBean Winner

INPRISE
Winner: VisiBroker ORB
VisiBroker provides the infrastructure
necessary to enable industry-standard,
cross-platform
communication
among distrib-
uted objects. Vis-
iBroker provides
a complete
CORBA ORB
environment for
building, deploy-
ing and manag-
ing distributed Java and C++ objects.
With native implementations of the Inter-
net Inter-ORB Protocol (IIOP), VisiBroker
allows you to take advantage of the
opportunities presented by Web, Internet
and intranet-based technologies while
leveraging the component reuse fostered
by object-oriented computing.

IBM
1st Finalist: eNetwork Host

On-Demand
IBM eNetwork Host On-Demand pro-
vides easy and secure host access to
users in Internet-based environments,
including intranets and extranets. It
enables businesses to extend the reach
of their host applications and data to
new users, including business partners,
suppliers and sales personnel.

Host On-Demand gives users secure
browser access to host applications and
data with Java-based emulation. With
support for TN3270E, TN5250,
VT52/100/220 and CICS applications
included in a single package, users need
only one interface to reach key host data.

ObjectSpace, Inc.
2nd Finalist: Voyager ORB

Professional
Voyager ORB Professional, formerly Voy-
ager Professional Edition, is a standards-
neutral, 100% Pure Java object request
broker that simultaneously supports
CORBA, RMI and, soon, DCOM. Voyager
ORB Professional includes a graphical
management console, configuration
framework, JNDI integration, persistent

Best JavaBest Java
VisualAge for Java

IBM

JBuilder
Inprise

PowerJ
Sybase

20%

17%
13%

Best Applica-Best Applica-
WebObjects

Apple Computer

Enterprise App
Server - Sybase

WebSphere App
Server - IBM

20%
16%

14%

54 AUGUST 1999

MiddlewareMiddleware
VisiBroker ORB - Inprise

eNetwork Host
On-Demand
IBM

Voyager
Professional Edition

IBM

22%
14%

12%

Best Class
The Java Collections Framework

Sun Microsystems

JGL - ObjectSpace

alphaBeans
IBM

Best Class

31%
17%

14%

55AUGUST 1999

SalesVision
www.salesvision.com

56 AUGUST 1999

directory and CORBA naming service
and support for ultra-light.

IBM
Winner: alphaBeans
alphaBeans include a variety of Java-
Beans that can be used to develop Java
applets or applications. Use these beans
in any visual builder tool, such as IBM
VisualAge for Java, to quickly and easily
build Java programs through visual
wiring — without writing a line of code.
Currently, alphaBeans include more than
300 beans in areas of user interface,
XML, wiring helpers, networking, mask-
ing, image processing and much more.

A unique feature of alphaBeans is
their wireability; they can be used in an
IDE by simple visual programming –
even if you don’t know Java. Recently
released beans also include special
“helpful” features to make them even
easier to use in visual programming
environments.

KL Group Inc.
1st Finalist: JClass Enter-
prise

Suite
The JClass Enterprise Suite is a compre-
hensive collection of JavaBeans, compo-
nents and utilities for professional Java
GUI developers. This package provides a
wide range of high-value GUI functional-
ity including charting and graphing,
tables and grids, data connectivity, data
input validation, JAR building, and a set
of extensions and enhancements to the
Swing toolkit. JClass Enterprise Suite
includes a comprehensive support ser-
vice and the following products: JClass
Chart, JClass LiveTable, JClass Field,
JClass SwingSuite, JClass HiGrid, JClass
DataSource and JClass JarMaster.

Rogue Wave
Software, Inc.
2nd Finalist: StudioJ Class
StudioJ offers high-quality, integrated, pure
Java components for visualizing enterprise
data. Its data interface allows the user to
access data from a variety of sources. Stu-
dioJ allows the user to read in the data,
populate the data model and then view
data in a grid, chart or complex overlay

charts. StudioJ also provides a number of
UI components that can be used to
enhance JFC Swing or AWT components.

InstallShield
Winner: InstallShield Java
Edition
InstallShield Java Edition 2.5 is a tool that
produces bulletproof, cross-platform
installations. InstallShield walks the user
through installation production, creating
a single package that can be read by Java
Virtual Machines version 1.1.6 or higher.
Multiple source and target directory sup-
port lets the user specify more than one
source directory and one target directory
for installation files. InstallShield gener-
ates the applet and Web page, as well as
the necessary code to allow Web users to
download and launch the installation. It
also has several internationalization fea-
tures that allow the user to write multiple
language installs so the end user can
choose the language in which the instal-
lation will run.

ZeroG Software, Inc.
1st Finalist: InstallAny-
where
Written entirely in Java, InstallAnywhere
from ZeroG Software is a powerful solu-
tion available for building professional
multiplatform installers capable of
installing to virtually any client or server
platform. Every installer built with
InstallAnywhere recognizes the platform
under which it’s operating and tailors its
installation to the user’s system.

IBM
2nd Finalist: Install Toolkit for
Java
Install Toolkit for Java is a program for
writing Java and non-Java install pro-
grams for OS/2, OS/390, AIX, Solaris,
Linux and Windows NT/95 software. Since
Install Toolkit for Java is written in Java, it
can be run on any platform and operating
system that supports Java. This portability
provides a simpler installation and distrib-
ution process. Installing your program
with Install Toolkit for Java requires one
file (install.class) and easy steps for imple-
mentation. When install.class is run, the
rest of the install program files are extract-

ed from install.class. One of these files is
data.zip, which contains all the files in
your product to be copied during the
install process, and enables the install
image for your product to be built with a
simple zip utility.

Rational Software
Winner: Rational Rose
Rational Rose 98i provides Unified Mod-
eling Language-based modeling for
designing component-based applica-
tions. It features multilanguage capabili-
ties and enterprise team development
features. Rose 98i Enterprise Edition has
multilanguage support, allowing the user
to mix and match multiple languages
within the same model, and it supports
C++, Java, Smalltalk and Ada, as well as
4GLs such as Visual Basic, PowerBuilder
and Forte. For Java development, Ratio-
nal Rose supports the design, modeling
and visualization of all Java constructs.

Object International,
Inc.
1st Finalist: Together/J
Together/J is the visual UML modeler
featuring simultaneous round-trip engi-
neering. The Whiteboard Edition fea-
tures simultaneous design-and-code
editing, supporting the way designers
and programmers work. The White-
board Edition features UML class mod-
eling developed for solo programmers
building Java applications. For a limited
time, developers can download it from
www.togetherj.com. The Developer and
Enterprise editions feature a suite of
UML diagrams, custom forward and
reverse engineering, HTML doc gen,
version-control links and support for
both Java and C++ apps.

Sybase, Inc.
2nd Finalist: PowerDesign-
er
PowerDesigner offers a comprehensive
modeling solution that business and sys-
tems analysts, designers, DBAs and
developers can tailor to meet their spe-
cific needs -- depending on the size and
scope of the project. With PowerDesign-
er, users can create conceptual data
models, then automatically generate

physical data models and de-normalized
physical designs for over 30 database
management systems. Reverse engineer-
ing allows a designer to “blueprint” an
existing database structure for documen-
tation or retargeting to a different data-
base. And PowerDesigner modules sup-
port all the leading development tools.

KL Group Inc.
Winner: JProbe
Profiler
JProbe Profiler is a Java
development tool that
helps developers improve
the performance of Java applications.
JProbe Profiler lets the developer pin-
point and eliminate performance bottle-
necks caused by inefficient objects in
Java code. JProbe Profiler combines a
visual call-graph interface and unique
data collection technology with nine dif-
ferent performance metrics to provide
accurate diagnostics on both perfor-
mance and memory usage. JProbe Profil-
er includes the fully integrated JProbe
Memory Debugger that helps developers
locate memory leaks and reduce the
memory used by Java applications.

Intuitive Systems,
Inc.
1st Finalist: Optimizeit 3.0

Professional
Optimizeit delivers a solution for Java
developers looking to track down and fix
performance issues in any Java applica-
tions, servlets, applets or JavaBeans.
Optimizeit 3.0 Professional offers com-
plete profiling capabilities including
memory-leak debugging, CPU profiling
and monitoring of object allocations.
Using Optimizeit, Java developers get
complete information about CPU and
memory usage on any part of their pro-
grams down to the responsible line of
source code. Optimizeit allows for
remote profiling of any Java process,
integrates with multiple IDEs, supports
most JDK 1.1.x and Java 2 virtual
machines with no modifications, and is
available for multiple platforms (Win-
dows, Solaris, Linux).

Rational Software

Best Java
Rational Rose

Rational Software

PowerDesigner
Sybase

Together/J
Object International

Best Java

36%
22%

18%

Profiling Tool
Profiler
KL Group

Visual Quantify
Rational
Software’s

Optimizeit 2.0
Professional Edition

Intuitive Systems29% 23%

17%

Profiling Tool
Best JavaBest Java

alphaBeans - IBM

JClass
KLGroup

Studio J
Rogue Wave Soft-

31%

19%
11%

Best Java
Installation Tool

InstallShield Java Edition
InstallShield

Install Toolkit
for Java - IBM

InstallAnywhere
Zero G

Best Java
Installation Tool

53% 28%

14%

57AUGUST 1999

9NetAvenue
www.9netave.com

58 AUGUST 1999

2nd Finalist: Visual Quanti-
fy
Rational Visual Quantify is a perfor-
mance profiling tool that automatically
pinpoints application performance bot-
tlenecks, taking the difficulty and guess-
work out of performance tuning. Visual
Quantify also delivers repeatable timing
data for all parts of an application
including components.

TidestoneTechnolo-
gies
Winner: Formula One for
Java
Formula One for Java is lightweight, high-
performance spreadsheet technology
designed for Web-based, distributed com-
puting environments. Positioned for both
server-side and client-side solutions, Formu-
la One can be utilized as a JavaBean in larg-
er Java applications and application servers,
an applet in Web pages and a standalone
application on any desktop. Formula One
provides 100% Pure Java, Microsoft Excel-
compatible spreadsheet functionality includ-
ing a reporting tool for developers and a
consequent front-end analytical/calculation
tool for end users. Its multithreaded archi-
tecture allows users to distribute and receive
data from multiple sources concurrently.
Formula One can read, write and distribute
data in .vts, .xls and HTML file formats. With
its workbook designer, Formula One offers
all of the data-formatting features found in
typical desktop spreadsheet applications.

Business Objects
1st Finalist: WebIntelli-
gence
WebIntelligence is a multitier, thin-client
decision support system (DSS) that pro-
vides nontechnical end users with ad hoc
query, reporting and analysis of informa-
tion stored in corporate data warehouses,
data marts and packaged business appli-
cations over the World Wide Web. WebIn-
telligence 2.0 offers features for extranet
deployments, an online analytical pro-
cessing (OLAP) module for drilling in
charts and tables, and numerous options
for report creation and distribution.

Jinfonet Software,
Inc.

2nd Finalist: JReport
Server
JReport is a pure Java report designer and
application server. With JReport, users can
design reports with many features including
sections, subre-
ports, nested
groups, formulas,
conditional format-
ting, graphs/charts,
crosstab, RTF text
and over 160 built-
in functions. Exten-
sive APIs let you
access user data source, write Java func-
tions, define new objects and import Jav-
aBeans. The designer provides intuitive
SQL, and Report Wizards and property
sheets. JReport Viewer supports table of
contents, drill-down, hyperlinks and on-
screen sorts.

MERANT
Winner: PVCS
PVCS is a comprehensive process-based
configuration management tool for
complex development projects allowing
the user to choose the level and depth
of SCM needed. As a software configu-
ration manager (SCM), PVCS offers
class tools for version management,
issue and change management, and
build and release management. Other
features include task automation and
protection against development errors.
PVCS provides support for the user’s
choice of platforms, environments and
interfaces.

Rational Software
1st Finalist: Rational
ClearQuest
Rational ClearQuest is a flexible defect-
tracking/change-request management
system for tracking and reporting on
defects and other types of change
requests throughout the development
lifecycle. ClearQuest provides reliable
and efficient project metrics and short-
ens development cycles by unifying all
team members – project managers, QA
managers, testers and developers – in
managing software development
change.

C yclic
Software/Free
Software Foundation
2nd Final-
ist: CVS
CVS is a version
control system
that allows the
user to keep old
versions of files
(usually source
code) and a log
of who, when
and why
changes
occurred, like RCS or SCCS. CVS oper-
ates on hierarchical collections of direc-
tories consisting of version-controlled
files, not just on one file or one directory
at a time. CVS helps to manage releases
and to control the concurrent editing of
source files among multiple authors.
CVS allows triggers to enable/log/control
various operations and works well over
a wide network.

Sun Microsystems
Winner: SunTest
SunTest is a suite of Java testing tools
developed specifically for testing Java
applications and applets. These three
tools are written entirely in the Java lan-
guage and are designed to work on all
Java-compatible platforms. The SunTest
suite consists of JavaStar, JavaSpec and
JavaScope. Collectively, these tools can
be used for automating Java test devel-
opment and execution and for analyzing
test coverage.

Rational Software
1st Finalist: Rational
TeamTest
Rational TeamTest is a testing tool deliv-
ering integrated functional testing of
Java, Web, ERP and client/server appli-
cations. Built on a scalable, integrated
server-based test repository, Rational
TeamTest combines functional testing
power and comprehensive management
tools for automated testing of applica-
tions. Rational TeamTest comprises the
following components: a test recording
tool, defect tracking, Web-site manage-
ment, a Web-based defect entry tool

and a test planning, management and
analysis tool.

Mercury Interactive
2nd Finalist: WinRunner
WinRunner is an enterprise functional
testing tool that verifies applications
work as expect-
ed. By capturing
and replaying
user interactions
automatically,
WinRunner iden-
tifies defects and
ensures that business processes that
span across multiple applications and
databases work flawlessly the first time
and remain reliable throughout the life-
cycle. WinRunner is integrated with all of
today’s leading application development
and deployment environments including
ERPs, the Web, Java and traditional GUI
development tools.

Activated Intelli-
gence
(Java Lobby)
Winner: Activated Commu-
nity
Activated Community, an Internet ser-
vice for building sustainable online com-
munities, is built on a pure Java founda-
tion and uses the power of XML/XSL to
enable dynamic and diverse forms of
information delivery. Activated expects
AC to quickly integrate with e-mail and
news clients, Palm Pilots, WebTV and a
host of future form factors.

Symantec Corporation
1st Finalist: VisualCafé

Database Edition
VisualCafé Database Edition is a Java
development solution for corporate
databases. JavaBean, database and
servlet wizards simplify and accelerate
development of database-aware Java
applications. VisualCafé supports such
Java technology as JFC/Swing, JDBC,
RMI and JDK 1.2. It includes dbANY-
WHERE Server for Win95/98/NT featur-
ing JDBC/ODBC connectivity, providing
native support for Oracle, Sybase,
Informix and MS-SQL databases.The
three-tier architecture makes it possible

Team Development
ToolPVCS

Merant

CVS
Cyclic Software
/Free Software
Foundation

Rational ClearQuest
Rational Software31% 24%

22%

Team Development
Tool

Java Testing Tool
SunTest
Sun Microsystems

WinRunner
Mercury
Interactive

Rational TeamTest
Rational Software26%

20%

16%

Java Testing Tool ApplicationActivated
Community
Activated Intelligence (Java Lobby)

Jasmine
Computer Associates

International

VisualCafé
Database Edition

Symantec
24%

14%
11%

Application
Best Java

Formula One for Java
Tidestone

Technologies

JReport Server
Jinfonet Software

WebIntelligence
Business Objects

Best Java

19%
18%

14%

59AUGUST 1999

HostPro
www.hostpro.com

to provide lightweight applications on
the client machine, offloading network
and database traffic, and eliminating the
need to configure and maintain large
client applications.

Computer Associates
International, Inc.
2nd Finalist: Jasmine
Jasmine is an industrial-strength, pure
object database that features a fully inte-
grated multimedia development envi-
ronment. With Jasmine, developers can
create an application once and deploy it

without change across the Internet,
intranet, extranet or client/server config-
urations. A feature of Jasmine is Jasmine
Studio – a fully integrated visual applica-
tion development and database man-
agement environment.

IBM
Winner: VisualAge for Java
See Best Java IDE Winner

Activated Intelli-
gence
(Java Lobby)
1st Finalist: Activated Com-
munity
See Best Java Application Winner

Sybase, Inc.
2nd Finalist: PowerJ
See Best Java IDE 2nd Finalist

4thpass
Winner: SourceGuard
4thpass SourceGuard Enterprise Edition
is a solution for protecting Java byte-
code. Whether you’re developing an
applet, application, servlet, class library
or JavaBeans, SourceGuard enables
users to protect bytecode. Using Loop
Hiding technology, SourceGuard trans-
forms flow-control graphs of methods
containing loops to irreducible graphs.
Furthermore, SourceGuard uses Byte-
code Range Modification to ensure that
all methods will have a nonvalid repre-
sentation in Java source code.

JAMM Consulting, Inc.
1st Finalist: ObfuscatePro

Milestones from the Poll
by Alan Williamson

February 15:
I just can’t keep away from this one. Because we’re represent-
ing the development community, we really can’t overlook this
one. To some of you, I’m sure your JBuilder or VisualCafé is
your home for the best part of the day. VisualAge is still strong,
but its comfort zone is not as great as it was in our last review.

March 4:
Gosh, this is a closely run race, with Apple head to head with IBM.
Apple is edging out in front with their WebObjects by only 43
votes. Remember, Apple came in late to the polls with a tremen-
dous surge. It would appear the wind in their sails is beginning to
die down. However, Apple recently announced its move toward
open source with its new server, so let’s keep an eye on this to
see if it wins over support from the development community.

An area that’s close to my heart is Java servlets. We can see
that the big players in the servlet world aren’t faring too bad

compared to the bottomless money pits of IBM and Apple.
WebLogic is heading the bunch with 7% of the category’s votes.
Paul Colton’s JRun is coming in at 6% with Stefano Mazzocchi’s
team’s JServ coming in at 4%. These are application servers that
have been designed specifically to run Java servlets, with all of
the above contributing very heavily to the core design of the
Servlet API.

April 1:
In the category Best Installation Tool, no real surprises are com-
ing through here. You’re voicing your support for InstallShield
(49%) with InstallAnywhere (34%) coming up in an admirable
second place; 41% of you voted for a product within this cate-
gory. This is encouraging and very good news for Java.

April 5:
Tools to allow the development world to tune their creations to
that of a well-oiled engine are included in our awards. JProbe
and Optimizeit! are competing strongly for Best Java Profiling
Tool. Interestingly, though, only 25% of you voted in this cate-
gory. Do you think this is atypical of the number of developers
that actually bother to profile their code? I sincerely hope not!

Great Products that Didn’t Win!
Most of the top companies – for example, Sun, IBM, Apple – have
serious marketing budgets for each of their products. But what
about the smaller companies, the ones that don’t have quite the
same influence with journalists and find it difficult to get press?

I urge you to check some of them out.

Underdog of the IDE Category:
Elixir is sitting hear the bottom of the list of true IDEs. They have
managed to pull in only a small part of the votes, and to be hon-
est this is a bit harsh. They produce a very sexy, clean, Java-
based IDE environment. It’s not bloatware like many of its coun-
terparts sitting near the top. So check them out at
www.visolu.com/visprod.htm and let me know what you think.

Summary
As stated in Rick Ross’s new column, launched this year, exam-
ples of small Java start-ups are already disappearing. I fully sup-
port his standpoint and wish to pick up the guantlet where Rick
left it. We all need to support the smaller companies and help
them by at least giving them a chance before automatically
looking toward the likes of IBM or Sun for solutions.

60 AUGUST 1999

VisualAge for Java
IBM

PowerJ - Sybase

Activated
Community
Activated Intelligence

14%
12%

12%

Most Innovative
Java Product
Most Innovative
Java Product

SourceGuard
4thpass

JCloak
Force 5

ObfuscatePro
JAMM Consulting

49%
20%

12%

Code Protection
Tool
Code Protection
Tool

Nominations
for JDJ’s

Millenium Awards
are being accepted

at
JavaDevelopersJour-

nal.com

Java vendors
can nominate

their products
before

Nov. 30, 1999

You can find detailed coverage of the
1999 Readers’ Choice Awards at our Web site!

61AUGUST 1999

Worldwide Internet
www.wipc.net

Attention to the basics of OOP pays dividends
for the creators of a new interpreter

WRITTEN BY
GENE CALLAHAN

& BRIAN CLARK

Back to Basics

The basic principles underlying the
object paradigm haven’t changed since its
inception. Although not all experts agree,
the most common definition of an object-
oriented language is that it’s required to
support four distinct concepts – encapsu-
lation, data abstraction, polymorphism
and inheritance. In this article we’ll
describe how attention to these basics has
paid big dividends for us in creating the
HotScheme interpreter. But first, let’s
review what each of these concepts means.
• Encapsulation: Generally, most aspects

of a class should be invisible to objects
outside the class. By encapsulating
member variables and methods (i.e.,
making them private or protected), a
design can more precisely control their
usage and therefore ensure the correct-
ness of that usage.

• Data abstraction: Class A, which uses
class B, should be able to interact with
a narrowly defined interface to B. This
interface should present A with a view
of B’s usage, not its implementation.
For example, a user of a symbol table
class doesn’t need to know if it’s
implemented as a hashtable, an array
or some other concrete data struc-
ture. Users only need to know how to
place a symbol in the table and how to
get its value back out.

• Polymorphism: Having defined an
interface as above, objects that imple-
ment that interface should generally
be interchangeable. If class A needs
an object of class “SymbolTable”
passed to its constructor, then all
descendants of SymbolTable should
also be acceptable parameters.

• Inheritance: A class should be able to
inherit as much of its behavior as pos-
sible from more primitive classes with
the same signature, in order to maxi-
mize code reuse.

How These Principles Helped
When we began working on Hot-

Scheme, we didn’t know where we would
take the project. To test our ideas about
how to build the interpreter engine (see
“Design Patterns in a Java Interpreter,” JDJ
Vol. 4, issue 1), we started out using a sim-
ple character terminal I/O. This was the
interface we had seen in most of the Lisp
interpreters we had dealt with. We opened
a terminal window, output a prompt and
read the user’s input as it occurred. As
soon as we saw a closing parenthesis that
matched the first opening one, we parsed
and ran the user’s code.

It would have been “easiest” to sim-
ply call System.out.println() and Sys-
tem.in.read() everywhere we needed to
do I/O. However, this would have been
an example of what Larry Wall, the cre-
ator of Perl, refers to as “false laziness.”
We would have killed off some of the
work in version one only to have the
ghost of that work haunt us, with an
effort many times the initial savings, in
versions two and three.

Fortunately, we make every effort we
can to practice true laziness. Therefore,
we sent all I/O through an object we
called “LispTerminal.” We defined a sim-
ple but sufficient interface to the class,
using the time-tested metaphor of a
character terminal as our model – an
example of data abstraction. The class

needed just three public methods –
read(), print() and unread(). For the con-
venience of the users of the class (us!),
we added a println() method (see Listing
1). We created a single, simple descen-
dant of LispTerminal, CharLispTermi-
nal, which sent its I/O to System.out and
System.in. These actual I/O channels
were hidden from users of the class
through encapsulation (see Listing 2).

We decided to pass an instance of this
class to methods that used it, rather than
using a member variable, so that a new
terminal type could be plugged in at any
point while running. Here is a case of a
general preference: when a private
method needs to access a member vari-
able of its own class, we like to pass it as a
parameter to the method rather than
access it directly. This may seem a curi-
ous waste of CPU cycles, but we’ve found
that this practice offers in return a great
deal of flexibility in using these functions,
and even aids in the occasional reparti-
tioning of a class hierarchy: if the method
is directly accessing a class member, it’s
not easy to move it to another class.

Having completed our “proof-of-con-
cept” cut at the interpreter, we decided
we should be able to run HotScheme as
an applet. This would allow an institu-
tion wanting to use HotScheme to place
a single copy of the interpreter on its Web
server where any student with a browser
could access it. Running as an applet
entailed restraints on what we could do.
Besides the usual limitations imposed
for security, we also had to worry about
whether the JDK features we employed
were generally supported in browsers.

62 AUGUST 1999

O B J E C T - O R I E N T E D P R O G R A M M I N G

A
s we try to keep pace in the frantic Internet era, it’s easy
to become enraptured by the latest technologies – Java-
Beans, CORBA, Swing and so on. However, in the rush
to add the latest buzzword to our résumés or market-
ing brochures, we too often forget the basics of object-
oriented programming. The basics were the reason
OOP was developed and what first attracted us to this
paradigm. How many of us have had the dismaying
experience of coming across “object-oriented code”
that, although it might implement a “cross-platform,
event-driven, multithreaded, multitiered” application,
had all the elegance and organization of spaghetti code
written in unstructured Basic.

63AUGUST 1999

KL Group
www.klgroup.com

64 AUGUST 1999

Since we’d planned for change and extension from the start, we were
able to add the GUI interface without changing the underlying inter-
preter. We descended another class, GUILispTerminal from LispTermi-
nal, which had to perform some tricks that LispTerminal did not. Instead
of continuously feeding input to the interpreter, GUILispTerminal for-
wards all input only when an “Evaluate” button is clicked. Otherwise
we’d have hit conflicts between the user’s ability to interact with the GUI
and the interpreter’s operation. For example, if we were interpreting typ-
ing as it occurred, what would we do when the user clicked the “Trace
On” button in the middle of typing in a command?

Another new issue is that we now had the possibility of hitting an end-
of-input condition. In character mode the interpreter simply kept trying
to read a character until the user quit the application. This wouldn’t work
in GUI mode because we’d eventually reach the end of our input buffer.
We wanted to grab control back from the interpreter and collect another
batch of input. We added a single new call, eof(), and had it always return
false in the base class but true in GUILispTerminal whenever the end of
the buffer had been reached. A true return from eof() would break out of
the interpreter’s endless read-evaluate-print loop.

Since we were no longer using simple character I/O, we had to devise
a replacement for our use of a PushbackInputStream in CharLispTermi-
nal so we could “unread” a character in GUI mode as easily as we could
in character mode. We had the GUI put all keystrokes into a buffer inter-
nal to GUILispTerminal. Unreading a keystroke became as simple as
decrementing an index into that StringBuffer:

public void unread(int c) { if(pos > 0) pos--; }

To implement the above, we had to add a new call for use from the
GUI, which we called setBuffer(). This change was transparent to the
interpreter itself, however, as the call isn’t needed from its vantage point.
See Listing 3 for the implementation of GUILispTerminal.

Our next adventure with the LispTerminal family came when we real-
ized that the ability to load a package of Scheme code from a URL would
be useful. A site hosting HotScheme could then supply users with pack-
ages of Scheme code as libraries, sample programs and student exercis-
es.

Our new class, URLLispTerminal, shared the need for buffering with
GUILispTerminal, so we created a new common ancestor for them,
BufferedLispTerminal, and moved the methods and members that
enabled buffering into that class (see Listing 4). The public methods that
moved were eof(), read(), unread() and setBuffer(). Using inheritance, we
were then able to make use of this code in both GUILispTerminal and
URLLispTerminal.

The constructor for a URLLispTerminal takes a URL and another
LispTerminal as arguments. Input is fetched from the URL, while all out-
put is merely passed through to the contained terminal that was passed
in the constructor. To load and run a file of Scheme code, all we had to
do was pass a new instance of URLLispTerminal to our existing function,
LispInterpreter.read_eval_print_loop(). This was done in the simple

functor that implements the load command. The functor itself is essen-
tially one line of code surrounded by some exception handling:

// the StringVal of the first arg is the URL,
// env.getTerm will return the current LispTerminal,
// and env is essentially the current symbol table
LispInterpreter.read_eval_print_loop(

new URLLispTerminal(
args.first().StringVal(), env.getTerm()),
env);

Although adding the ability to read code from a file based on user-
typed input, adding the definitions in the file to the current environ-
ment, running the code and then returning control to the user might
seem like a job that would involve changes thoughout the program, no
code outside of the LispTerminal package and the Load functor
changed.

We decided that we’d hit on a mechanism that would be generally use-
ful, and abstracted it for all LispTerminals. In the base class we added
two member variables, one to hold an input LispTerminal, the other an
output LispTerminal. We redefined the base class implementations for
reading and writing so that they’d first check the appropriate member. If
it’s not null, they delegate the I/O task to the contained object. This
change was completely contained within the LispTerminal hierarchy.
We’ll illustrate the pattern with print() – read(), unread() and eof() are all
similar:

public final void print(Object obj)
{

if(out_term != null) out_term.print(obj);
// polymorphism – the else clause will call the descendant’s
my_print()

else
my_print(obj);
}

When we implemented our “plug-and-play” terminals, it occurred to
us that we simply might have designed the interpreter to use separate
I/O channels and done away with the terminal concept. This method
would have some advantages. There’d be no need for a forwarding mech-
anism in LispTerminal or, indeed, any kind of terminal class at all. Every-
where we passed a LispTerminal, we would instead pass two parameters:
an input sink and an output sink. However, we decided we liked the
compactness of a single terminal object and the implication that both
sides of I/O had to be handled as a unit. After all, in most cases the
nature of the input will be tied to the nature of the output. Moreover,
without the terminal object to keep track of the I/O delegation, some
other mechanism would need to be created to do so. Having the LispTer-
minal class keeps this code all in one spot.

We’re convinced that we can now easily create new terminals that
combine socket, GUI, terminal and file I/O in any arbitrary combination
desired. We could, for instance, create a terminal that teed its output,
perhaps writing to both the screen and a file, or we could send code off
to a fast server for processing.

Our design was far from ideal when we started coding. With perfect
foresight, the addition of the delegation mechanism and the buffered
class would have been unnecessary – we would have included them from
day one. But only gods produce perfect designs. Because we followed the
four principles of object-oriented design, none of the changes we had to
make were onerous, and each took less than a day’s worth of coding.

Our next step in the HotScheme project is to make SchemeObject a
bean. Scheme differs from Java in that even the most primitive con-
structs in the language, such as “if” and “case,” can be considered
Scheme objects in their own right. In our implementation this is repre-
sented by having all of them descend from the base class SchemeOb-
ject. We intend to implement a JavaBeans interface to all of the lan-
guage constructs in Scheme. This will permit the construction of visu-

CDR
www.cdrinteractive.com

O B J E C T - O R I E N T E D P R O G R A M M I N G

65AUGUST 1999

Component
Developement ‘99

www.componentdevelopment.com

66 AUGUST 1999

al editors for the language itself. Rather
than presenting an abstract graphical
model, then writing out a batch of text
code quite different in structure from
the graphical representation, it will be
the actual code presenting itself graph-
ically that will appear in the editor. Stu-
dents will be able to pick “if,” “else,”
“case,” “+” and other language ele-
ments off a bean palette and connect
them graphically. A bean will know
what other types of beans and how
many it can be connected to, and it can
offer students help in creating a state-

ment. For instance, if a student picks
the “+” bean, the editor could indicate
that all its input connections must eval-
uate to numbers. The student could
attach numbers, symbols or functions
to the bean only as input. (Unfortu-
nately, we couldn’t tell in advance if a
particular symbol or function would
result in a number – to do that we’d
have to be able to run the program
before the student finished construct-
ing it!)

HotScheme is an open source project,
and we encourage sites interested in

using the tool and developers who wish
to contribute to contact us. The Web site
for the project, which includes two
applet versions, JavaDocs, sample
Scheme code and an archive of the
source code is http://stgtech.com/
HotScheme/.

gcallah@erols.com bclark@crosslink.net

abstract public class LispTerminal extends
HotSchemeInternalRep
{

public LispTerminal()
{
}

publicLispTerminal(LispTerminal in,
LispTerminal out)

{
in_term = in;
out_term = out;

}
public final void print(Object obj)
{
if(out_term != null)

out_term.print(obj);
else

my_print(obj);
}
abstract public void my_print(Object
obj);

public final void print(int i) {
print(new String((new
Integer(i)).toString())); }

public final void print(long l) {
print(new String((new
Long(l)).toString())); }

public final void println(Object obj)
{

if(out_term != null)
out_term.println(obj);
else my_println(obj);

}
abstract public void my_println(Object
obj);
public int read()
{

if(in_term != null) return
in_term.read();
else return my_read();

}
abstract public int my_read();
public void unread(int c)
{

if(in_term != null)
in_term.unread(c);
else my_unread(c);

}
abstract public void my_unread(int c);
public boolean eof()
{

if(in_term != null) return
in_term.eof();
else return my_eof();

}
abstract public boolean my_eof();
public SchemeToken getToken()
throws SchemeException
{

if(token_stack.empty())
return new SchemeToken(this);
else return
(SchemeToken)token_stack.pop();

}
public void pushToken(SchemeToken
token)
{

token_stack.push(token);
}

//place for clients to push tokens back to:
private Stack token_stack = new Stack();

private LispTerminal in_term = null;
private LispTerminal out_term = null;

}

import java.io.*;
import java.util.Stack;

public class CharLispTerminal extends
LispTerminal
{

public CharLispTerminal(InputStream
in, PrintStream out)

{
input = new PushbackInputStream(in);
output = out;
}
public void my_print(Object obj)
{
output.print(obj); output.flush();
}
public void my_println(Object obj)
{
output.println(obj);
}
public int my_read()
{
int c = 0;
try
{
c = input.read();
}
catch(java.io.IOException e)
{

;
}
return c;

}
public void my_unread(int c)
{

try
{

input.unread(c);
}
catch(java.io.IOException e)
{

;
}

}
public boolean my_eof()
{
return false;
}
private PushbackInputStream input;
private PrintStream output;

}
import java.util.Vector;

class GUILispTerminal extends
BufferedLispTerminal
{
private Vector m_vOutput;
private boolean debug = false;

public GUILispTerminal()
{

m_vOutput = new Vector(5);
}
private void print(String s)
{
m_vOutput.addElement(s);
if(debug)
{

System.out.println("GUILispTerminal::print
Vector is " + m_vOutput);
System.out.println("GUILispTerminal::print
" + s);

}
}
public void setInput(String s)
{

setBuffer(s);
if(debug) System.out.println("GUILispTer-
minal::setInput " + s); //debug

}
public Vector getOutput()
{
if(debug) System.out.println("GUILispTer-
minal::getOutput " + m_vOutput); //debug

Vector vTemp = (Vector)m_vOutput.clone();
m_vOutput.setSize(0);
return(vTemp);

}
public void my_print(Object obj)
{

print(obj.toString());
}
public void my_println(Object obj)
{

print(obj.toString() + "\n");
}
}

abstract public class BufferedLispTerminal
extends LispTerminal
{

public BufferedLispTerminal()
{

super();
CommandBuf = new StringBuffer("");

}
public BufferedLispTerminal(LispTermi-

nal in, LispTerminal out)
{

super(in, out);
CommandBuf = new StringBuffer("");

}
public int my_read()
{

if(pos < CommandBuf.length())
return((int)CommandBuf.charAt(pos++));

else
return(0);

}
public void my_unread(int c)
{

if(pos > 0) pos--;
}
public boolean my_eof()
{

if(pos < CommandBuf.length())
{

// if everything else is spaces, return
true, else false

for(int i = pos; i < Command-
Buf.length(); i++)

{

if(!Character.isWhitespace(CommandBuf.charA
t(i)))

return false;
}
CommandBuf.setLength(pos); //

we won't look at those spaces again
}
return true;

}
protected void setBuffer(String s)
{

pos = 0;
CommandBuf.setLength(0);
CommandBuf.append(s);

}
private StringBuffer CommandBuf;

private int pos = 0;
}

Listing 4

Listing 3

Listing 2

Listing 1

AUTHOR BIOS
Gene Callahan is president of St.

George Technologies, where he
designs Internet projects. He has

written articles for Computer
Language, Software

Development and Web
Techniques, among others.

Brian Clark is a software
engineer residing in Virginia.
His current focus is on the

application of design patterns
on UI and middle-tier

design using Java.

Code listings for this article can also be
located at www.JavaDevelopersJournal.com

▼▼▼▼ CODE LISTING ▼▼▼▼

O B J E C T - O R I E N T E D P R O G R A M M I N G

67AUGUST 1999

Mecklermedia
www.mecklermedia.com

A
s the Web grows, a great deal of effort is being made toward writing applications in Java that inter-
act with databases. Fortunately, JDBC provides an easy, database-vendor–independent way of writ-
ing such applications.While this approach works for a number of applications, there are limitations.
For instance, if the application requires execution of a large number of SQL statements, efficiency
becomes an issue since round-trips from the application to the database are costly. Also, since these
statements aren’t precompiled, the database system spends more time executing them than it
would have if they were compiled and residing in the database.

Writing Effective Web Applications Using Java and Oracle

WRITTEN BY
VIVEK SHARMA

PL/ SQL

68 AUGUST 1999

This is where PL/SQL comes in. It’s a
database language that enhances SQL
by providing structure to SQL programs.
It’s rich with elements like control struc-
tures that we’re used to seeing in such
languages as C and Java. Thus you can
write arbitrarily complex routines that
manipulate the database using PL/SQL.
More important, you can compile
PL/SQL programs in an Oracle database
so they execute faster at runtime.

Oracle Application Server
The next question is, How do we

execute PL/SQL programs from within
our Java applications? Enter the world
of the Oracle Application Server (OAS)!
Web applications started with CGI
programs running at the back end.
With increased use, this approach
started reaching its limits because
most CGI programs consume a lot of
resources on the host machine for exe-
cution. Application servers came on
the market to solve this problem,
among others. The Oracle Application
Server is one such product that helps
to execute your Web applications effi-
ciently .

Since describing the OAS in detail
isn’t feasible here, I’ll cover the basic
items you’ll need to understand the rest
of the material. Broadly speaking, the
OAS consists of a Web Request Broker
(WRB) that handles Web requests that
require execution of an application. The
WRB routes these requests to the appro-
priate executable code. It provides load
balancing and other services, such as
transaction management, to the appli-
cations executing in the OAS environ-
ment.

Cartridges
The requests are served by programs

called cartridges that in turn may exe-
cute applications written in languages
such as Java, C and Perl. As a developer,

you may write either a cartridge or a car-
tridge application, commonly referred
to as a component.

The OAS comes with a number of car-
tridges, one of which is the JWeb car-
tridge. This cartridge is meant for exe-
cuting Java applications. It maintains an
instance of a Java Virtual Machine and
executes the Java class specified in the
request.

The OAS also comes with a PL/SQL
cartridge, which can be used for execut-
ing PL/SQL applications directly. How-
ever, the focus of our current discussion
is on integrating Java applications with
database applications, so we won’t dis-
cuss the PL/SQL cartridge here.

Virtual Paths
There is the concept of virtual paths

in the OAS. A virtual path can be
thought of as an arbitrary name that
you specify through the administration
screens of your OAS. Each virtual path
maps to a particular cartridge. When a
request comes in, the OAS checks to see
if the URL contains a virtual path in it. If
it does, the OAS determines which car-
tridge this path maps to and then
directs an available instance of that car-
tridge to execute the code requested in
the URL.

A virtual path also has a physical
directory associated with it – this is
where the executable code you’ve writ-
ten needs to reside. The following exam-
ple should make this clear.

Let’s say you’ve declared a virtual
path called “myjava” in the OAS that
maps to the JWeb cartridge, and speci-
fied that the associated directory is
/home/me/java_dir. If somebody sit-
ting on a client such as a browser
requests the URL http://yourma-
chine/myjava/Employees, the OAS will
recognize myjava as a virtual path. It’ll
also determine that this maps to a JWeb
cartridge. Accordingly, it’ll direct an

available instance of the JWeb cartridge
to execute Employees.class. This is a
class file created by you that resides in
the directory /home/me/java_dir on
the server where your OAS is running.

pl2java Utility
A utility called pl2java comes as part

of the OAS package. If you invoke this
utility on a PL/SQL package stored in
your Oracle database, it produces a Java
class file. You may then use this class file
in your Java application to invoke proce-
dures and functions in that package. (A
PL/SQL package is a collection of
PL/SQL procedures and functions
grouped together.)

With this background about the OAS,
we can move on to see how a program
running in the JWeb cartridge can exe-
cute PL/SQL procedures and functions.
To illustrate a typical usage, we’ll devel-
op a small application – one that allows
people to register online on your Web
site.

Developing a Sample Application
The registration process starts with a

user accessing your registration URL. To
keep things simple, let’s assume this
URL is a static HTML page. This page
contains an HTML form in which the
user fills out information such as first
and last name, e-mail address, phone
and so on. The “ACTION” of this form is
an application that writes the informa-
tion to an Oracle database and returns a
thank you page.

Internally, this application is written
in Java where variables from your form
are extracted and error checking is
done. A PL/SQL procedure that writes
the information to the database and
returns a success or failure code to the
Java application is then invoked. Based
on this result, the Java application
returns a thank you or error page to the
user.

J A V A & P L / S Q L

69AUGUST 1999

SlangSoft
www.slangsoft.com

Java
Developer’s

Journal
www.javadevelopersjournal.com

Training
etc

www.trainingetc.com

Designing the Database
The first step in writing this application is

to design the database where information
(name, address, phone, e-mail address) will
be stored. While it’s quite reasonable to have
just one table in which all the information
will be stored, we’d be compromising extensi-
bility of the database in doing so. Instead, let’s
see which things go together and which don’t.

Obviously, the first and last name go
together. So let’s create a table called “Person”
with two fields, First_Name and Last_Name,
both of VARCHAR2 with max size of 50 each.
Address can be in a separate table of the same
name. Fields can be “Line_1”, “Line_2”, “City”,
“State”, “Country” and “Zip”. How about e-

mail and phone? They’re essentially telecom
addresses. Keeping them in the same table
will have the added advantage that if we want
to expand the registration application later to
include fax, mobile phone, etc., we won’t
have to write an additional table to store this
new information. But we need to distinguish
one type from another. So we’ll have a “Type”
field in this table that can take on values like
“E-MAIL”, “FAX” and “PHONE”. This table
would be “Telecom_Address” and would have
the following fields: “Code” and “Type”, both
of which are VARCHARs.

A quick recap – we have three tables:

Person – First_Name, Last_Name

Address – Line_1, Line_2, City, State,
Zip, Country.
Telecom_Address – Code, Type.

We also need to establish a relationship
between these tables so we can link the
records. In the Person table we add a field
called “Id”. This will have a unique value for
each person who uses the registration sys-
tem. In the Address and Telecom_Address
tables we add a field called “Person_Id” that
points to a record in the Person table.

To illustrate how it’ll work, assume that
five people have registered. For the first user
our application stores “1” in the ID field of
record created for this user in the Person
table, “2” for the second one and so on. It also
stores the same number in the Person_Id
field of records created in the Address and
Telecom_Address table. To find the name,
address and e-mail of the second person, we
can issue the following SQL statement:

SELECT Person.First_Name,
Person.Last_Name,

Address.Line_1, Address.Line_2,
Address.City,

Telecom_Address.code
>FROM Person, Address, Telecom_Address
WHERE Person.Id = 2 AND Person.Id =
Address.Person_Id

AND Person.Id =
Telecom_Address.Person_Id

AND Telecom_Address.type =
'EMAIL';

PL/SQL for Manipulating the Database
Next, we’ll write some PL/SQL packages

that will insert records into the database. But
as we saw, we need a way to generate a
unique number for the ID field of Person. For
this we’ll use the concept of sequences. For
our purposes let’s create a sequence of the
name “Person_Seq” by issuing the following
SQL statement:

CREATE SEQUENCE Person_Seq START WITH 1;

As far as packages are concerned, we’ll cre-
ate four packages – one for handling inser-
tion into each of the three tables, and a top-
level package that calls routines in the other
packages. We do this so only one API will be
consistently exposed to the Java application
that needs to call these routines.

I won’t go into much detail about packages
and PL/SQL in general – suffice it to say that
a package consists of a declaration followed
by an implementation, also known as the
package body. A sample package for adding
stuff to the Person table would look like:

CREATE PACKAGE Person_Pkg AS
PROCEDURE add(I_FNAME IN VARCHAR2,

I_LNAME IN VARCHAR2,
I_ID IN NUMBER);

Specialized
Software

www.specializedsoftware.com/jdj

70 AUGUST 1999

J A V A & P L / S Q L

71AUGUST 1999

SlangSoft
www.slangsoft.com

add(F_NAME IN VARCHAR2,
.... -- Other things like l_name, address etc.
PHONE IN VARCHAR2,
RESULT_VAL OUT NUMBER) IS
Temp_Result NUMBER;
Temp_Seq NUMBER;

BEGIN
/* Temp_Result is a temporary variable that

indicates to the calling Java application
whether the user information was recorded
successfully or not. 1 indicates success */

Temp_Result := 1;

/* Create a unique Id for this user */
SELECT Person_Seq.NEXTVAL FROM Dual INTO Temp_Seq;

/* We insert name of the person along with the ID
generated above by calling the add() procedure
in the Person_Pkg package created above */

Person_Pkg.add(F_NAME, L_NAME, ID);

/* Similarly the address is added. The ID this
time goes into the Person_Id field of the
Address table */

Address_Pkg.add(LINE_1, ID);

/* We need to add the phone and e-mail as 2
separate records */

Telecom_Address_Pkg.add(PHONE, 'PHONE', ID);
Telecom_Address_Pkg.add(EMAIL, 'EMAIL', ID);

/* If an exception occurs, result is set to
0 so the Java application can treat it
accordingly. Note that you can add similar
exception handlers in the other packages
also to have better control over generation
of error messages.*/

EXCEPTION
WHEN OTHERS THEN

Temp_Result := 0;
END add;

/*The OAS comes with a number of packages that allow you to
decode the FORM variables as well as generate HTML. The “rdbms”

package allows you to establish a Session with the database for
invoking PL/SQL procedures/functions. */

import oracle.rdbms.*;
import oracle.plsql.*;
import oracle.html.*;
public class Register
{

/*We’re declaring a variable ‘s’ of the type Session – here Ses-
sion is a class that comes in the rdbms package. It represents
the connection we’re establishing with the database. We’re
declaring this as a global ‘static’ variable so that the same
Session can be used by multiple requests,
increasing program efficiency. */

static Session s = null;
public static void main(String[] args)
{

Register r = new Register();
r.start();

}
public void start()
{

/* Declare a variable of HTTP.class - a class that comes as part
of the OAS and can be used within Java applications to get infor-
mation about the current HTTP request such as FORM variables */

HTTP http;
...
String fName = http.getURLParameter("fName);

/*Similarly, get all other parameters such as lName, etc. Check
if values are valid by calling a method value sAreValid (not
shown). You could check things like whether the e-mail entered by
the user has a missing '@' and other things like this. */

if(valuesAreValid(fName, lName))
{

try{
writeToDB(fName, lName);

}catch(Exception e){}
}
else
{

errorHandler();

Listing 2

Listing 1

AUTHOR BIO
Vivek Sharma is a

software developer at
Oracle Corporation. He
has a BS in computer
science and some six

years of software
research and

development experience.
Interests include

development of Web-
based tools/technologies

and technical writing.

72 AUGUST 1999

END Person_Pkg;
CREATE PACKAGE BODY Person_Pkg AS

PROCEDURE add(I_FNAME IN VARCHAR2,
I_LNAME IN VARCHAR2,
I_ID IN NUMBER)

IS
BEGIN

INSERT INTO Person(FNAME, LNAME,
ID)

VALUES (I_FNAME, I_LNAME, I_ID);
END add;

END;

Packages for manipulating the other
two tables would look similar.

Our top-level package is Reg_Api. The
body of this package contains the proce-
dure add(), which looks like Listing 1.

The next step is to compile these
packages by using something like
SQL*Plus. Once these packages are
compiled, we can use the pl2java utility
to generate a class file.

Invoking pl2java
If we’ve compiled these packages in a

database in the schema “myschema/
myschema”, with the connect string as
“myConnect”, we can invoke the pl2java
utility from the command line as follows:

pl2java myschema/myschema@myConnect
Reg_Api

This will generate a class called
Reg_Api.class that can be used in our
Java application.

Note that pl2java accepts some com-
mand-line parameters that enable you
to do things like changing the name of
the output class file.

HTML Page for the Application
Now that we know where and how

we’re going to store information, we’ll
take a top-down approach, starting with
the HTML form. Instead of showing the
complete HTML, I’ll show some relevant
portions:

<FORM ACTION='http://yourserver/myja-
va/Register'>
<INPUT TYPE='text' NAME='fName'
VALUE=''>
<INPUT TYPE='text' NAME='lName'
VALUE=''>
<P>
<INPUT TYPE='text' NAME='line1'
VALUE=''>
..... Other fields
<INPUT TYPE='text' NAME='email'
VALUE=''>
<INPUT TYPE='text' NAME='phone'
VALUE=''>
<P>
<INPUT TYPE='submit' NAME='Submit'
VALUE='Submit'>
</FORM>

This HTML file can be put in the
document root directory of the
machine hosting the OAS. We now
need to create a Java application –
specifically, a class called Register.

After we’ve created it, we need to move
it to the directory that corresponds to
the virtual path “myjava”.

The Java Application
Our Java application should first

decode the values typed by the user and
check to make sure they’re valid. Then it
should invoke the PL/SQL procedure
developed above. Based on the result
value returned by the PL/SQL proce-
dure, it should commit the transaction
and present a thank you page, or roll
back and present an appropriate error
page.

Listing 2 shows what our Java pro-
gram looks like.

Conclusion
As we’ve seen, PL/SQL procedures

can be invoked easily through an OAS
environment. This saves us unnecessary
round-trips to the database, and gives
us an added advantage in that the SQL
code is precompiled and would thus
execute faster. All in all, by using the
pl2java utility of the OAS, you can create
a seamless interface between your Java
applications and PL/SQL procedures to
build powerful Web applications that
interact with the database.

(The opinions and statements
expressed in this article are my own and
don’t necessarily represent those of Ora-
cle Corporation.)

}
}
void writeToDB(String fName,)

throws ServerException
{

// Before we create a Session, we need to inform it of the ORA-
CLE_HOME.

Session.setProperty("ORACLE_HOME", OracleHome);

/* Check if there is a session already established with the data-
base. If so, use that Session else create a new Session */

if(s == null)
s = new Session("userName",

"password", "connectString");

/* As we can see here, if a session has already been established
in this instance, the same session can be used by other HTTP
requests handled by this instance. Since a good deal of time is
established in creating connections to the database, we have cre-
ated an optimization that will ensure the session need not be
reestablished for every new request. */

/* Reg_Api is the class generated by pl2java */

Reg_Api ra;

/* Create an instance of Reg_Api and pass the instance of the
session created above so the class knows which database/schema it
needs to work against */

ra = new Reg_Api(s);

/* Since there are no datatypes in Java that map directly to
PL/SQL datatypes, Oracle has provided mapping classes in the
plsql package. For a VARCHAR2, you need to convert your String to
a PStringBuffer() before calling a PL/SQL procedure that requires
a VARCHAR2 as input. Similarly for NUMBER, you must create a
PDouble. Likewise there are equivalent datatypes for most PL/SQL

datatypes. */

PStringBuffer pFName = new PStringBuffer(fName);

// Similarly PStringBuffers for all variables to be passed to
add() in Reg_Api

...

/* The result, however, is a NUMBER type, so we create a PDouble
*/

PDouble result = new PDouble(1);

/* Now invoke the procedure as if you were calling a normal
PL/SQL procedure */

ra.add(pFName, pLName,pPhone, ... result);

/* result will now contain the value stored in this variable by
the add() procedure. We need to examine this. Before that we con-
vert it to an int by calling a method in PDouble */

if(ra.intValue() == 0)
{

errorHandler();

/* Rollback this transaction as it failed */
s.rollback();

}
else
{

/* Commit this transaction */
s.commit();
showThankYouPage();

}
}

}

vivek_sharma_99@yahoo.com

Code listings for this article can also be
located at www.JavaDevelopersJournal.com

▼▼▼▼ CODE LISTING ▼▼▼▼

J A V A & P L / S Q L

73AUGUST 1999

SD ‘99
www.sdexpo.com

Bidirectional communication between your
custom bean and its container classes

WRITTEN BY
JIM MANGIONE

Adding a Custom Event to a JavaBean
T I P S & T R I C K S

This proved to me how simple writing
and deploying a JavaBean was. It also
introduced me quickly to the concept of
custom event handling. You see, the
bean’s container class (be it an applet,
frame, etc.) can easily talk to the bean
and invoke public methods such
as bnLogin.setDefaultUserName(). But
after the bean validates a user, it has to
notify its container whether the user is
valid or invalid through the use of a cus-
tom event.

In JDK 1.1, if you use only standard
GUI events such as mouseClicked() or
keyPressed(), they’re inherited from the
java.awt.AWTEvent, which superseded
the java.awt.Event class used in JDK 1.0.
If a TextField component wants to
inform its container class that a user just
typed a character into it, there’s a stan-
dard event for that, keyPressed(), which
most of today’s IDEs will set up for you.
However, if a custom component such as
our login bean wants to inform its con-
tainer class that a user has just been val-
idated – actionValidated(), for instance –
a new event must be written.

Along with the JDK 1.1 java.awt.AWT-
Event class came the introduction of the
java.util.EventListener and java.util.-
EventObject classes. These exist to pro-
vide custom event handling. To use
them is a four-step process.

Step 1
In Listing 1 a new event is created by

extending the EventObject class, which

will hold the username and validated
status when the bean fires a login event.

Step 2
A new listener is created as an inter-

face that extends the EventListener
class, which contains the methods that
pass the LoginEvent object to all regis-
tered listeners, as shown below:

public interface LoginEventListener
extends EventListener {

public void actionValidated(Login-
Event e);

public void actionCanceled(Login-
Event e); }

The container class (such as an
applet) will implement this listener and
the two defined methods. The login
bean will store a reference to the con-
tainer class (stored in a vector) and,
using that reference, call the appropri-
ate method whenever an event is fired
(see Figure 1).

Step 3
Next, our login bean will need to be

modified to create LoginEvents and
notify the container classes of an event
via the methods defined in the Login-
EventListener. It must also provide
public methods to add and remove the
container classes. Don’t worry. I can
assure you it’s really not as bad as it
sounds!

We’ll start with how to register the

container classes that will listen to
events fired by the bean. As shown in
Listing 2, an addLoginEventListener()
and removeLoginEventListener() are
added as public methods to the bean.
These maintain the vListeners Vector,
which holds LoginEventListener objects.
There will be one element in this Vector
for each listener.

The two events required by our login
bean to be fired are when a user selects
the <OK> button, actionValidated(),
and if the user cancels the login,
actionCanceled(). The easiest way to
do this is to have two private methods
called fireValidatedEvent() and fire-
CanceledEvent(). After the user has
been validated or denied access, I call
the callfireValidateEvent() method or
the fireCanceledEvent() method inside
the mouse-click event of the cancel
button. Listing 3 shows an example
of the fireValidatedEvent. This loops
through each element in the vListeners
Vector, casting the element to the
LoginEventListener class and calling
the actionValidated() method of that
object.

The same code is used for the fireCan-
celedEvent(), only el.actionValidated() is
replaced with el.actionCanceled().

Step 4
The login bean is now firing off events

for any objects that implement the
LoginEventListener class and register
with the bean. So how do we listen for
these events? The container class must
implement the LoginEventListener
class, register itself with the bean and
define the methods from the listener.
This is detailed in Listing 4.

By following these four steps, you can
have bidirectional communication
between your custom bean and the con-
tainer classes that hold them.

74 AUGUST 1999

FIGURE 1: Communication between a bean and its container class

AUTHOR BIO
Jim Mangione, a senior

database application
developer with an MS in

computer science from
Drexel University, has

nine years of IT
experience in the

pharmaceutical and
chemical industry. He’s
been involved in both

traditional client/server
development and

distributed application
development using Java
and application server

technology. mangione@k2nesoft.com

O
ne of the first truly reusable components I wrote in Java was
a login bean that validated a username/password against our
company’s network. It was lightweight (using AWT classes),
and worked with both applets and applications.

CDR
www.cdrinteractive.com

FOCUS

SYS-CON
PUBLICATIONS

XML Tutorial
pg.20

XML Tips, Tech-
niques and Tricks

pg.26

XML FAQs from
Our Panel
of Authors

pg.38

Display Ads from the
Leading XML Ven-

dors
pg.79

Javatizing XML
pg.57

XML Standards
pg.66

WDDX: Allaire’s ColdFusion Connection Jeremy Allaire

ColdFusion 4.0 and WDDX 10

XML: Does it Take Data Formatting Where
No EDI Has Gone Before? Kang Lu

Making Your XML Code Readable and Understandable 18

XML and Java: The How and the Why Isreal Hilero

Integrating Java and XML on the Web 35

Displaying XML: Lessons Learned Tom McGraw

Making Formatting and Displaying XML a Non--Issue 40

ORACLE’ XML Strategy Ajit Sagar

Powerhouse Makes a Name in XML 52

Product Review: ODI Excelon Sean Rhody

Excelon’s Answer to Creating and Maintaining XML 70

Product Review: IBM xml4j Parser Alan Williamson

IBM’s Answer to Parsing XML 84

Book Review: XML Applications Ajit Sagar

Learning XML Made Easy 95

From the Editor
Welcome to XMLJ

pg.5

XML AND JAVA: HOW AND WHY
TM

Don’t miss JDJ’s September ’99
XML Focus Issue!

subscribe online at

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲ ▲

▲▲▲▲▲▲▲▲

FO US

Feature Stories:
• Welcome to XMLJ by Ajit Sagar
• Displaying XML: Lessons Learned by Tom McGraw
• XML and Java: The How and the Why by Israel Hilerio
• XML: Does it Take Data Formatting Where

No EDI Has Gone Before? by Kang Lu
• WDDX: Allaire's ColdFusion Connection by Jeremy Allaire
• Oracle’s XML Approach by Martin Boyd
• BizTalk: Microsoft's XML Server by Ajit Sagar
Product Reviews:
• ODI: Excelon by Sean Rhody
• IBM XML4j Parser by Alan Williamson
Book Reviews:
• XML Applications: WROX Press by Ajit Sagar
• XML By Example: Sean McGarth, Prentice Hall by Alan Williamson
XML Tips • XML Tutorial • XML FAQs from Our Panel of Authors
Javatizing XML • XML Standards • XMLNews

...and much much more!

The Best

XML
Coverage

Guaranteed!

FOCUS

76 AUGUST 1999

public class LoginEvent extends EventObject {
private String sUSERNAME;
private boolean bVALIDATED;

LoginEvent(Object source) {
super(source);

}
LoginEvent(Object source, String sUsr, boolean bValidated)

{
this(source);
sUSERNAME = sUsr;
bVALIDATED = bValidated;

}
public String getUsername() { return sUSERNAME; }
public boolean getValidated() { return bVALIDATED; }

}

public addLoginEventListener(LoginEventListener el) {
vListeners.addElement(el);

}
public removeLoginEventListener (LoginEventListener el) {

vListeners.removeElement(el);
}

private void fireValidatedEvent(String sUsr,boolean bValidat-
ed) {

Vector v;
LoginEvent e;

v = (Vector) vListeners.clone();
e = new LoginEvent(this, sUsr, bValidated);
for (int i=0; i<v.size(); i++) {
LoginEventListener el = (LoginEventListener)

v.elementAt(i);
el.actionValidated(e); }

}

public class appNetApps extends Applet implements
LoginEventListener {

bnLoginBean bnLogin = new bnLoginBean();
bnLogin.addLoginEventListener(this);
// adds this object to the vListeners Vector in the bean

public void actionValidated(LoginEvent e) {
// code here for handling event when user clicks <OK> on
// login bean
}
public void actionCanceled(LoginEvent e) {
// code here for handling event when user clicks <Cancel> on
// login bean
}

Listing 4

Listing 3

Listing 2

Listing 1

Instantiations
www.instantiations.com

The code listings for this article can also be located at
www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

77AUGUST 1999

Vizualize
www.visualizeinc.com

Wall
Street
Wise

www.wallstreetwise.com

ADVERTISER URL PH PG

9NETAVENUE, INC. WWW.9NETAVE.COM 888.9NETAVE 49

BATEMAN, INC. WWW.BATEMANINC.COM 805.383.3338 75

BEA WEBLOGIC WWW.WEBLOGIC.BEASYS.COM 800.817.4BEA 2

BLUE SKY SOFTWARE WWW.BLUE-SKY.COM 800.559.4423 13

BORLAND.COM WWW.INTERBASE.COM/PRODUCTS/DEMOJDJ.HTML 800.451.7788 x7183 21

CAREER OPPORTUNITY ADVERTISERS 800.846.7591 76-81

CEREBELLUM SOFTWARE WWW.CEREBELLUMSOFT.COM 888.862.9898 23

CLOUDSCAPE, INC. WWW.CLOUDSCAPE.COM 888.59JAVA1 15

COMPUTER ASSOCIATES INTERNATIONAL, INC. WWW.CAI.COM/ADS/JASMINE/DEV 888.7JASMINE 6

CYRUS INTERSOFT, INC. WWW.CYRUSINTERSOFT.COM 612.331.6600 39

CYSCAPE WWW.CYSCAPE.COM/FREE4J 800.932.6869 16

DEVELOPMENTOR WWW.DEVELOP.COM 800.699.1932 63

ELIXIR TECHNOLOGY WWW.ELIXIR.COM.SG 65 532.4300 35

ENTERPRISESOFT WWW.ENTERPRISESOFT.COM 510.742.6700 11

FINDAHOST.COM WWW.FINDAHOST.COM 440.257.6690 69

HOSTPRO WWW.HOSTPRO.NET 213.252.9779 57

IMI SYSTEMS INC. WWW.IMISYS.COM 800.828.0180 61

INETSOFT TECHNOLOGY CORP WWW.INETSOFTCORP.COM 732.235.0137 47

INSIGNIA SOLUTIONS, INC. WWW.INSIGNIA.COM 800.848.7677 33

INSTANTIATIONS INC. WWW.INSTANTIATIONS.COM 800.808.3737 67

JAVA DEVELOPER’S JOURNAL SUBSCRIBE@SYS-CON.COM 800.513.7111 73-75

JDJ STORE WWW.JDJSTORE.COM 888.303.JAVA 59

ADVERTISER URL PH PG

KL GROUP INC. WWW.KLGROUP.COM/JCLASS/POWER 888.328.9597 52,53

KL GROUP INC. WWW.KLGROUP.COM/CULPRITS 888.328.9597 84

KL GROUP INC. WWW.KLGROUP.COM/TRUTH 888.328.9597 25

NSICOM WWW.NSICOM.COM 97.2.353.31976 63

OBJECT DOMAIN SYSTEMS, INC. WWW.OBJECTDOMAIN.COM 919.461.4904 37

OBJECT INTERNATIONAL SOFTWARE WWW.TOGETHERJ.COM 919.772.9350 41

OBJECTSPACE, INC. WWW.OBJECTSPACE.COM/GO/UNIVERSAL 800.OBJECT1 82,83

OBJCETSPACE, INC. WWW.OBJECTSPACE.COM 888.59JAVA1 45

ONEREALM, INC. WWW.ONEREALM.COM/JDJ 800.633.1072 x23839 7

ORACLE CORPORATION WWW.ORACLE.COM/INFO/32 800.633.1072 x23839 17

PROTOVIEW WWW.PROTOVIEW.COM 800.231.8588 3

RIVERTON SOFTWARE CORPORATION WWW.RIVERTON.COM 781.229.0070 29

SALES VISION WWW.SALESVISION.COM 800.275.4314 51

SLANGSOFT WWW.SLANGSOFT.COM 972.375.18127 55

SOFTWIRED INC. WWW.SOFTWIRED.COM (41)1.445.23101 38

SPECIALIZED SOFTWARE WWW.SPECIALIZEDSOFTWARE.COM/JDJ/ 800.328.2825 x6576 44

SUMMER INTERNET WORLD 99 WWW.INTERNET.COM/REGISTERSUMMER 800.632.5537 65

SUN MICROSYSTEMS, INC. WWW.SUN.COM/SERVICE/SUNED 800.422.8020 4

THE THEORY CENTER WWW.THEORYCENTER.COM 888.843.6791 43

TIDESTONE TECHNOLOGIES, INC. WWW.TIDESTONE.COM 888.880.0665 31

TRAINING/ETC.COM WWW.TRAININGETC.COM 410.531.9953 69

VISUALIZE INC. WWW.VISUALIZEINC.COM 602.861.0999 63

ADVERTISINGINDEX

78 AUGUST 1999

TM

Ja
va

Buye
rsG

uide.c
om

Ja
va

Buye
rsG

uide.c
om

JAVA
BUYER’S

GUIDEBUYER’S

GUIDE

• Applica
tion

Serv
ers

• Books

• Class L
ibraries

• Code P
rotec

tion (N
EW

)

• Components (
NEW

)

• Consultin
g Serv

ice
 (N

E

• Database
Tools

• Deve
lopment To

ols

• Ed
ucation and T

• Hardware
Prod

• ID
ES

• Modelin
g T

• Netw
or

• Other

• Profi

• Re

• S

JAVAS
P

E
C

IA
L

 I
S

S
U

E

presents

the most complete reference to
Java products and services

the Annual Print Edition of

Attention
Java vendors!
update your listings at

JavaBuyersGuide.com
for our next print edition.

EX
C
LU

SI

VE
EXCLUSIV

E

FREE

CD!
FREE
COLLECTORS

CD!
BONUS

• Application Servers
• Books
• Class Libraries
• Code Protection (NEW)
• Components (NEW)
• Consulting Service (NEW)
• Database Tools
• Development Tools
• Education and Training
• Hardware Products (NEW)
• IDES
• Modeling Tools
• Network Tools (NEW)
• Other Java Tools (NEW)
• Profilers (NEW)
• Reporting Tools (NEW)
• Sites (NEW)
• Team Development Tools (NEW)
• Testing Tools
• Web Tools

BUYER’S
GUIDEJAVABUYER’S
GUIDEJAVA

▲
▲

▲
▲

▲▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲

JA
VA

de
ve

lo
per’s journal

JDJ
Readers’

CHOICE

 AWARD

World class

 AWARD

Subscribe to JDJ now
& receive Java Buyer’s Guide

FREE!

Subscribe to JDJ now
& receive Java Buyer’s Guide

FREE!

NEW
)

ls

Tra
ining

oducts
(NEW

)

g To
ols

rk To
ols

r Ja
va To

ols (
NEW

)

ofile
rs (

NEW
)

Reportin
g To

ols (
NEW

)

 Sites
 (N

EW
)

• Te
am Deve

lopment To
ols (

NEW
)

• Te
stin

g To
ols

• W
eb To

ols

79AUGUST 1999

Another view was that XML would replace proprietary business-to-
business commerce systems based on EDI, and that it would open up
new models of e-commerce based on industry-standard XML schemas.
This view, sometimes referred to as the XML data worldview, has increas-
ingly become the more relevant model for XML usage.

Despite an emerging clarity around the “proper” use of XML, adoption
has remained scattered. A first barrier to adoption was that the XML
standards weren’t solid. This has changed for the better in the last six
months. A second major issue was – and is – the fact that most data and
application environments haven’t been set up to use XML. Related to
this has been the fact that few developers are conversant with this new
model for data and application integration.

The Emerging Distributed Web
About a year ago I wrote a series of white papers under the banner of

the “emerging distributed Web.” The basic argument was pretty simple.
The Internet was about to undergo a radical transformation based on
new business models centered around Web syndication. Syndication
represented the idea that every Web site was not an island, that the con-
tent and application assets of every Web system was a set of data and ser-
vices that could be leveraged by every other site on the network.

Prior to writing the papers, I had been influenced by Bob Metcalfe,
who anticipated this in what he dubbed “Metcalfe’s Law,” which stated
that for every n-node added to the Internet, the Internet’s value would
grow exponentially. In this law I saw that if every Web system was a set
of data and application APIs for every other Web system, this would
radically change how business would be built in the emerging Internet
era.

From this it became clear that there needed to be an extremely simple
model for Web applications and systems to share assets with each other.
Of course, XML had recently emerged as the proper foundation for this,
but the basic XML infrastructure would not be sufficient to meet the
needs of developers and companies wanting to do it easily.

What was needed was a pragmatic view of distributed Web comput-
ing, one that embraced the basic principles that have made the Web suc-
cessful to date – principles such as simplicity and openness, and hetero-
geneous platforms and languages…and the idea that implementing this
should not require an extremely advanced programming and systems
infrastructure.

XML as Middleware
The basic conclusion drawn from all of this was that to embrace the

opportunity of Web syndication, we needed to enable transparent
application and data exchange based on XML but without all of the
overhead of “purist XML.” In short, we needed a model based on XML
as middleware. This refers to using XML as a “tunnel” for application
data exchange, where the applications and language environments
that are communicating never know they are using XML as a transport.
Internet programming languages would be the starting point, and a
lowest-common-denominator approach would be developed to
enable common data structures to be shared transparently between
languages, without any real work by developers.

From this emerged the Web Distributed Data Exchange, or WDDX. Ini-
tially created by Allaire, and integrated into the ColdFusion language
environment, WDDX was released into the public domain under a mod-
ified BSD license with an SDK and free implementations available from
Wddx.org. Over the past six-months WDDX has been implemented to
support COM (ASP, VB, etc.), Java, Perl, PHP, Python, JavaScript and
ColdFusion.

All of a sudden, with just a Web server, a scripting language and HTTP,
any application implemented in any language on the Internet can com-
municate with any other system. Content and application syndication
would now be possible with a trivial amount of work by either party
without their having to know a thing about XML.

The Loosely Coupled Web
The emerging XML middleware model, in fact, is posing a challenge to

those who are investing entirely in binary distributed object standards.
Indeed, Web systems will increasingly be implemented for maximum inter-
operability with other applications on the Internet. Given this, a model
based on XML, which relies on loosely coupled systems communicating
over HTTP, and implemented in potentially any language environment, is
changing architectural decisions for many Internet-centric companies.

By building on a simple foundation such as WDDX, one can imagine
layering additional semantics and services that support standard RPC-
style invocations, or more robust object request brokers layered on
WDDX, but without any language bindings or dependencies, and poten-
tially implemented over asynchronous transports such as SMTP and
POP. Some analysts are even beginning to argue that XML-HTTP will
evolve into a Web Object Model that rivals and even replaces systems
such as CORBA or EJB.

Designing for Web Syndication
Whatever evolution this new platform model actually takes, it is clear

that systems built around Web syndication represent an enormous
opportunity for companies and developers. Embracing this new model
requires a few simple things.
• First, companies must determine what business model they want to

wrap around Web syndication. For example, an e-commerce site
might create an affiliate program, and enable site affiliates to remote-
ly grab content and invoke transactions from your site through an
XML-based API. Or, in a B2B model, a company could expose a lead-
tracking system through a private URL, syndicating lead data to part-
ners accessing the system from their own applications.

• Second, companies need to evolve their core Web application infra-
structure to support Web syndication more directly. A great start for
this would be a JSP server, such as Allaire JRun, and WDDX for Java,
available from Wddx.org. From this it becomes trivial to expose any
data or application services to other applications, and to consume
content and application data from other sites.

• Finally, companies need to determine what content and services they
want to expose, build special URLs for accessing those functions and
document this for their customers and partners. I like to think of this
as developing a Web SynDK for your business – a set of Web-based
APIs, exposed through XML or WDDX, that enable your partners to
integrate your business with theirs.

IMHO (continued from page 7)

Subscribe
Today
and

receive
the

“CFDJ Digital
Edition”

FREE
at

COLDFUSIONJOURNAL.com

1800-513-7111
or subscribe online for faster service

subscribe@sys-con.comGE
T

YO
UR

 O
W

N!

80 AUGUST 1999

JDJ S
www.javadevelopersjourn

Store
nal.com/java/jdjstore.html

81AUGUST 1999

82 AUGUST 1999

Employment
Ad

83AUGUST 1999

Employment
Ad

84 AUGUST 1999

Employment
Ad

85AUGUST 1999

Employment
Ad

Three years ago, Cyrus InterSoft’s founder
and CEO, Scott Bayless and his team of devel-
opers decided to make Java deliver on its
promise of platform independent network
computing. They recognized the need for a
simple, cohesive way to transparently tie
together heterogeneous networks and com-
munications systems, providing users with
computing access anywhere, anytime, on
any device.

To fulfill Scott’s vision, certain parameters
would have to be met. The system would
have to:
• Be entirely abstracted in order to sit on
top of and leverage existing networks and
operating systems without compromis-
ing security.
• Provide an entirely new level of access
so users can be on any machine at any
time.
• Allow for comprehensive applica-
tion and resource allocation and dis-
tribution across systems and plat-
forms.
• Contain a new economic model to
enable effective distribution of those
applications and resources.

After three years of R&D, Speiros was
born.

On-Demand
Speiros provides an on-demand Java

application launching platform, elimi-
nating the barriers between the soft-
ware vendor and the consumer. Users
can now invoke and execute Java appli-
cations locally on their machines with-
out having to install them. The Java
application or applet does not require a
browser and can reside on any server
anywhere on the Internet. “Java appli-
cations and applets do not have to be
‘Speiros aware’ and therefore can be
distributed and accessed on-demand
without any installation or integration,”
says Bayless. “It’s that easy. Now the user
doesn’t need to worry about installa-
tions or upgrades and manufacturers
don’t need to shrink-wrap and distribute
products.”

The old model of Web pervasiveness tied
enterprises together through shared access to
content and messaging services such as e-mail
and FTP. Speiros adds a new layer to the enter-
prise, tying networks together through shared
access to programs, files and other computing
resources.

Single VM
Cyrus InterSoft made a number of techno-

logical breakthroughs while developing
Speiros. One example is the ability to run mul-
tiple Java programs on a single VM without
requiring any modifications to the VM. In addi-
tion, Speiros ensures that applications’ run
states are encapsulated so that no application
can attack another.

NO APIs
A second breakthrough was developing a

Java platform that required no APIs. Develop-
ers simply have to write clean Java code and it
will run on the Speiros system.

Client-Side Java
Current invocations of Java technology tend

to run on the server side. Cyrus Intersoft
designed Speiros to run the Java programs on
the client side. To make this possible, Cyrus
Intersoft built into the system the ability to
find, access and run – without manual installa-
tion – Java located anywhere on the Internet.

Beyond the Browser
Speiros was designed to go beyond the

browser – users download the Java front end
called an ESTATE. It provides a means to
launch Java applications and applets as well as
a networked pervasive file system.

The back end is made up of four servers:
speirosCenter, resourceCenter, appCenter and
meterCenter. Together these centers make it
possible for the user to store configurations
online, and find and rent applications and
other computing resources on demand.

Capabilities
Speiros provides Java developers with the

following capabilities:
• Internet access to their Java application or

applet without any FTP or installation hassles
• Exchange or delivery of documents without

attaching them to e-mail
• Instant upgrades of all user software with a

single centralized copy
• Use on a rental or subscription basis

The Speiros platform enables developers
and service providers to deploy their services
in a secure environment that is available any-
time, anywhere, from any network-enabled
device.

Free Download
Developers can download a limited compli-

mentary version of the Speiros technology in
early August at www.cyrusintersoft.com.

Speiros delivers
true anytime,
anywhere
pervasive
computing

Cyrus
Intersoft

86 AUGUST 1999

www (content) Content

Before Speiros With Speiros

Computing Services
and Applications

Data Network
CommunicationsTCP/IP (data network communications)

Company a Company b Company c

Lan bLan a Lan c

www (content)

Speiros (computing services and applications)

TCP/IP (data network communications)

Company a Company b Company c

Lan bLan a Lan c

scott@sys-con.com

AUTHOR BIO
Scot Davison is one of the founding authors of SYS-CON

Publicaitons, Inc.., the publisher of Java Developer’s Journal.
Scott can be reached at scott@sys-con.com

WRITTEN BY SCOTT DAVISON

F
I

R
S

T

L
O

O
K

F
I

R
S

T

L
O

O
K

87AUGUST 1999

ObjectSpace
www.objectspace.com

88 AUGUST 1999

KL Group
www.klgroup.com

